信息网络安全 ›› 2026, Vol. 26 ›› Issue (1): 79-90.doi: 10.3969/j.issn.1671-1122.2026.01.007

• 专题论文:网络主动防御 • 上一篇    下一篇

抽样情况下复杂LDoS攻击检测方法研究

徐一凡, 程光(), 周余阳   

  1. 东南大学网络空间安全学院,南京 214000
  • 收稿日期:2025-10-30 出版日期:2026-01-10 发布日期:2026-02-13
  • 通讯作者: 程光 gcheng@njnet.edu.cn
  • 作者简介:徐一凡(2000—),男,山西,硕士研究生,主要研究方向为网络与信息安全|程光(1973—),男,安徽,教授,博士,CCF杰出会员,主要研究方向为网络空间安全监测和防护、网络大数据分析|周余阳(1994—),男,江苏,助理研究员,博士,CCF会员,主要研究方向为网络安全、移动目标防御
  • 基金资助:
    国家自然科学基金(U22B2025);国家自然科学基金(62202097)

Research on Complex LDoS Attack Detection Methods under Sampling Conditions

XU Yifan, CHENG Guang(), ZHOU Yuyang   

  1. School of Cyber Science and Engineering, SouthEast University, Nanjing 214000, China
  • Received:2025-10-30 Online:2026-01-10 Published:2026-02-13

摘要:

低速率拒绝服务(LDoS)攻击借助网络协议的自适应机制缺陷,以合法方式致使网络自适应机制失效,显著降低带宽利用率和服务质量。因此,LDoS攻击的高隐蔽性和强破坏性使其成为网络安全领域的重要研究课题。针对复杂LDoS攻击在多网络层次中的隐蔽性及传统检测方法在抽样场景下的局限性,文章提出一种基于HLD-Sketch的LDoS攻击检测方法。文章涵盖在抽样情况下传输层LDoS攻击、应用层LDoS攻击及混合层次攻击场景。首先,通过改进的CM-Sketch结构实现动态流长估计,基于流长自适应调整抽样概率,优先对短流实施细粒度采样,减少长流背景噪声对攻击特征提取的干扰;其次,利用CM-Sketch的轻量级特性,在抽样流量中高效提取多维时序统计特征,包括流速率、上下行数据包个数及端口散布值等特征;最后,采用机器学习分类器对传输层、应用层及混合攻击进行层次化检测。实验结果表明,文章方法在3%的抽样率以及在混合攻击场景中,6 s内的检测准确率可以达到99.94%。该方法为高速网络环境下多维度LDoS攻击的实时检测提供了轻量化解决方案,尤其适用于大规模流量环境中的资源受限场景。

关键词: 低速率拒绝服务攻击, Sketch, 动态流抽样, 多维时序特征, 轻量化检测

Abstract:

Low-Rate Denial-of-Service (LDoS) attacks exploit vulnerabilities in network protocols’ adaptive mechanisms, causing these mechanisms to fail in a legitimate manner, significantly reducing bandwidth utilization and quality of service. Therefore, the high concealment and destructive nature of LDoS attacks make them an important research topic in the field of network security.Aiming at the concealment of complex low-rate denial-of-service (LDoS) attacks across multiple network layers and the limitations of traditional detection methods in sampled traffic scenarios, this paper proposes an LDoS attack detection method based on HLD-Sketch (Hybrid-LDoS-Detect-Sketch). The study covers the detection of transport-layer LDoS attacks, application-layer LDoS attacks, and hybrid multi-layer attack under sampling conditions. First, an improved CM-Sketch structure is introduced to dynamically estimate flow lengths and adaptively adjust sampling probabilities, prioritizing fine-grained sampling for short flows to reduce interference from long-flow background noise during attack feature extraction. Second, leveraging the lightweight nature of CM-Sketch, multidimensional temporal statistical features, such as flow rate, the number of upstream and downstream packets, and port dispersion, are efficiently extracted from the sampled traffic Finally, a machine learning classifier is employed to hierarchically detect transport-layer, application-layer, and hybrid attacks. Experimental results demonstrate that the proposed method achieves a detection accuracy of 99.94% with a 3% sampling rate within 6 seconds, even in hybrid attack scenarios. This approach provides a lightweight solution for real-time detection of multi-dimensional LDoS attacks in high-speed network environments, particularly suited for resource-constrained scenarios with large-scale traffic.

Key words: LDoS, sketch, dynamic flow sampling, multi-dimensional temporal features, lightweight detection

中图分类号: