信息网络安全 ›› 2026, Vol. 26 ›› Issue (1): 102-114.doi: 10.3969/j.issn.1671-1122.2026.01.009

• 学术研究 • 上一篇    下一篇

支持属性更新的轻量级联邦学习节点动态参与方案

郑开发1, 骆振鹏2, 刘嘉奕2, 刘志全2, 王赜3, 吴云坤4()   

  1. 1.浙江大学计算机科学与技术学院,杭州 310027
    2.暨南大学网络空间安全学院,广州 511443
    3.天津工业大学软件学院,天津 300387
    4.奇安信科技集团股份有限公司,北京 100084
  • 收稿日期:2025-08-20 出版日期:2026-01-10 发布日期:2026-02-13
  • 通讯作者: 吴云坤 wuyunkun@qianxin.com
  • 作者简介:郑开发(1989—),男,湖北,高级工程师,博士,CCF会员,主要研究方向为隐私计算、隐私保护和信息安全|骆振鹏(2003—),男,广东,本科,主要研究方向为数据安全、云安全、可搜索加密和隐私保护|刘嘉奕(2005—),男,江苏,本科,主要研究方向为密码学、数据安全和云计算安全|刘志全(1989—),男,山西,教授,博士,CCF会员,主要研究方向为车联网安全、数据安全、隐私计算|王赜(1976—),男,吉林,教授,博士,CCF高级会员,主要研究方向为数据智能分析、数据安全与隐私计算、工业智能软件|吴云坤(1975—),男,江苏,正高级工程师,博士,主要研究方向为关键信息基础设施安全、网络安全
  • 基金资助:
    国家自然科学基金(62272195);国家重点研发计划(2022YFB3104900);北京市高层次创新创业人才支持计划科技新星计划(20250484975)

A Lightweight Dynamic Node Participation Scheme for Federated Learning Nodes Supporting Attribute Update

ZHENG Kaifa1, LUO Zhenpeng2, LIU Jiayi2, LIU Zhiquan2, WANG Ze3, WU Yunkun4()   

  1. 1. College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
    2. School of Cyber Security, Jinan University, Guangzhou 511443, China
    3. School of Software, Tiangong University, Tianjin 300387, China
    4. Qi An Xin Technology Group Inc., Beijing 100084, China
  • Received:2025-08-20 Online:2026-01-10 Published:2026-02-13

摘要:

动态的节点参与和退出机制在异步联邦学习环境中可以有效提高学习的灵活性,因此,在涉及数据隐私与安全的场景下,保障参与节点的合法性和安全退出十分关键。文章提出一种支持属性更新的轻量级联邦学习节点动态参与方案。首先,通过引入属性加密和撤销机制,设计一种安全、灵活的参与机制,能够支持节点在参与过程中根据预定的安全策略动态加入或退出,且能够有效应对节点属性的变化,确保数据隐私性。然后,该方案结合区块链技术,使用其智能合约机制记录操作内容,实现了系统操作过程的公开透明,提高了属性撤销的安全性。通过方案分析,验证了算法生成的密文具有良好的不可区分性,性能分析则进一步验证了文章所提方案的优势。

关键词: 异步联邦学习, 节点参与, 动态退出, 属性加密, 可撤销

Abstract:

The dynamic node participation and exit process can effectively enhance the flexibility in asynchronous federated learning (FL) environment. However, in scenarios involving data privacy and security, ensuring the legitimacy and secure exit of participating nodes is crucial. This paper proposed a lightweight dynamic node participation scheme for federated learning nodes supporting attribute update. Firstly, by introducing attribute-based encryption and revocation mechanisms, this paper designed a secure and flexible participation mechanism that can support nodes to dynamically join or exit during the participation process according to the predetermined security policy, and can effectively respond to changes in node attributes, ensuring data privacy. Secondly, this scheme combined blockchain technology and used its smart contract mechanism to record the operation content, achieving the openness and transparency of the system operation process and enhancing the security of attribute revocation. Through scheme analysis, this paper have proved that the ciphertext generated by the algorithm has good indistinguishability. The performance analysis also effectively demonstrates the advantages of this scheme.

Key words: asynchronous federated learning, node participation, dynamic exit, attribute-based encryption, revocability

中图分类号: