信息网络安全 ›› 2026, Vol. 26 ›› Issue (1): 38-48.doi: 10.3969/j.issn.1671-1122.2026.01.003
收稿日期:2025-07-07
出版日期:2026-01-10
发布日期:2026-02-13
通讯作者:
范青 作者简介:王亚杰(1993—),男,河北,研究员,博士,CCF会员,主要研究方向为人工智能安全、数据安全、隐私保护|陆锦标(2002—),男,广东,硕士研究生,主要研究方向为联邦学习|谭冬黎(2002—),女,重庆,博士研究生,主要研究方向为人工智能安全、隐私保护|范青(1996—),女,山东,副教授,博士,CCF会员,主要研究方向为应用密码学、信息安全、安全协议设计|祝烈煌(1978—),男,浙江,教授,博士,CCF会员,主要研究方向为密码算法及安全协议、区块链、云计算安全、大数据
基金资助:
WANG Yajie1, LU Jinbiao1, TAN Dongli2, FAN Qing3(
), ZHU Liehuang1
Received:2025-07-07
Online:2026-01-10
Published:2026-02-13
摘要:
为评估胶囊网络对成员推理攻击的防御能力,文章在FashionMNIST和CIFAR-10数据集上进行成员推理攻击实验,选用LeNet、VGG16和ResNet18作为影子模型。文章测试了影子模型数量对攻击效果的影响,探究了模型过拟合程度与成员推理攻击的关系,并验证了差分隐私对该攻击的防御效果。实验结果表明,成员推理攻击的攻击成功率高达94.8%,但在1~5个影子模型下,影子模型数量对攻击成功率的影响不显著。此外,攻击成功率随模型过拟合程度的增加而上升,虽然差分隐私可有效提升胶囊网络的防御能力,但会导致其训练时间增加133%以上。上述结果显示,针对胶囊网络的成员推理攻击行为及其防御规律与常见模型相似,因此,在胶囊网络的设计与应用中需充分考虑其安全风险。
中图分类号:
王亚杰, 陆锦标, 谭冬黎, 范青, 祝烈煌. 面向胶囊网络的成员推理风险评估[J]. 信息网络安全, 2026, 26(1): 38-48.
WANG Yajie, LU Jinbiao, TAN Dongli, FAN Qing, ZHU Liehuang. Member Inference Risk Assessment for Capsule Network[J]. Netinfo Security, 2026, 26(1): 38-48.
| [1] | AL-RUBAIE M, CHANG J M. Privacy-Preserving Machine Learning: Threats and Solutions[J]. IEEE Security & Privacy, 2019, 17(2): 49-58. |
| [2] | SABOUR S, FROSST N, HINTON G E. Dynamic Routing between Capsules[C]// ACM. The 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 3856-3866. |
| [3] |
YADAV S, DHAGE S. TE-CapsNet: Time Efficient Capsule Network for Automatic Disease Classification from Medical Images[J]. Multimedia Tools and Applications, 2024, 83(16): 49389-49418.
doi: 10.1007/s11042-023-17458-4 |
| [4] |
DHALLA S, MITTAL A, GUPTA S. LeukoCapsNet: A Resource-Efficient Modified CapsNet Model to Identify Leukemia from Blood Smear Images[J]. Neural Computing and Applications, 2024, 36(5): 2507-2524.
doi: 10.1007/s00521-023-09157-w |
| [5] | LEI Yongjia, WU Zujian, LI Zhiying, et al. BP-CapsNet: An Image-Based Deep Learning Method for Medical Diagnosis[EB/OL]. (2023-10-01)[2025-05-23]. https://doi.org/10.1016/j.asoc.2023.110683. |
| [6] | SHOKRI R, STRONATI M, SONG Congzheng, et al. Membership Inference Attacks Against Machine Learning Models[C]// IEEE. 2017 IEEE Symposium on Security and Privacy (SP). New York: IEEE, 2017: 3-18. |
| [7] | BACKES M, BERRANG P, HUMBERT M, et al. Membership Privacy in MicroRNA-Based Studies[C]// ACM. The 2016 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2016: 319-330. |
| [8] | HAGESTEDT I, ZHANG Yang, HUMBERT M, et al. MBeacon: Privacy-Preserving Beacons for DNA Methylation Data[C]// IEEE. 2019 Network and Distributed System Security Symposium. New York: IEEE, 2019: 21-27. |
| [9] | PYRGELIS A, TRONCOSO C, DE C E. Knock Knock, Who’s There? Membership Inference on Aggregate Location Data[C]// IEEE. 2018 Network and Distributed System Security Symposium. New York: IEEE, 2018: 35-42. |
| [10] | HU Hongsheng, SALCIC Z, SUN Lichao, et al. Membership Inference Attacks on Machine Learning: A Survey[J]. ACM Computing Surveys, 2022, 54(11s): 1-37. |
| [11] | LONG Yunhui, BINDSCHAEDLER V, WANG Lei, et al. Understanding Membership Inferences on Well-Generalized Learning Models[EB/OL]. (2018-02-13)[2025-05-23]. https://doi.org/10.48550/arXiv.1802.04889. |
| [12] | IROLLA P, CHATEL G. Demystifying the Membership Inference Attack[C]// IEEE. 2019 12th CMI Conference on Cybersecurity and Privacy (CMI). New York: IEEE, 2019: 1-7. |
| [13] | LEINO K, FREDRIKSON M. Stolen Memories: Leveraging Model Memorization for Calibrated White-Box Membership Inference[C]// USENIX. The 29th USENIX Conference on Security Symposium. Berkeley: USENIX, 2020: 291-313. |
| [14] | CHOO C A C, TRAMER F, CARLINI N, et al. Label-Only Membership Inference Attacks[C]// ACM. The 38th International Conference on Machine Learning. New York: ACM, 2021: 1964-1974. |
| [15] | LI Zheng, ZHANG Yang. Membership Leakage in Label-Only Exposures[C]// ACM. The 2021 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2021: 880-895. |
| [16] | YEOM S, GIACOMELLI I, FREDRIKSON M, et al. Privacy Risk in Machine Learning: Analyzing the Connection to Overfitting[C]// IEEE. 2018 IEEE 31st Computer Security Foundations Symposium (CSF). New York: IEEE, 2018: 268-282. |
| [17] | REZAEI S, SHAFIQ Z, LIU Xin. Accuracy-Privacy Trade-Off in Deep Ensembles[C]// IEEE. 2023 IEEE Symposium on Security and Privacy (SP). New York: IEEE, 2023: 364-381. |
| [18] | SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958. |
| [19] | KAYA Y, DUMITRAS T. When Does Data Augmentation Help with Membership Inference Attacks[C]// ACM. The 38th International Conference on Machine Learning. New York: ACM, 2021: 5345-5355. |
| [20] | CARUANA R, LAWRENCE S, GILES C. Overfitting in Neural Nets:Backpropagation, Conjugate Gradient, and Early Stopping[C]// NIPS. The 14th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2000: 381-387. |
| [21] | NASR M, SHOKRI R, HOUMANSADR A. Machine Learning with Membership Privacy Using Adversarial Regularization[C]// ACM. The 2018 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2018: 634-646. |
| [22] | SALEM A, ZHANG Yang, HUMBERT M, et al. ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses on Machine Learning Models[C]// IEEE. 2019 Network and Distributed System Security Symposium. New York: IEEE, 2019: 111-115. |
| [23] |
DWORK C, ROTH A. The Algorithmic Foundations of Differential Privacy[J]. Foundations and Trends in Theoretical Computer Science, 2014, 9(3/4): 211-407.
doi: 10.1561/TCS URL |
| [24] | JIA Jinyuan, SALEM A, BACKES M, et al. MemGuard: Defending against Black-Box Membership Inference Attacks via Adversarial Examples[C]// ACM. The 2019 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2019: 259-274. |
| [25] | ZHANG Liheng, EDRAKI M, QI Guojun. CapProNet: Deep Feature Learning via Orthogonal Projections onto Capsule Subspaces[C]// ACM. The 32nd International Conference on Neural Information Processing Systems. New York: ACM, 2018: 5819-5828. |
| [26] | PHAYE S S R, SIKKA A, DHALL A, et al. Dense and Diverse Capsule Networks: Making the Capsules Learn Better[EB/OL]. (2018-05-10)[2025-05-23]. https://doi.org/10.48550/arXiv.1805.04001. |
| [27] | DELIEGE A, CIOPPA A, VAN D M. HitNet: A Neural Network with Capsules Embedded in a Hit-or-Miss Layer, Extended with Hybrid Data Augmentation and Ghost Capsules[EB/OL]. (2018-06-18)[2025-05-23]. https://doi.org/10.48550/arXiv.1806.06519. |
| [28] | SAHU S K, KUMAR P, SINGH A P. Dynamic Routing Using Inter Capsule Routing Protocol between Capsules[EB/OL]. (2018-05-27)[2025-05-23]. https://ieeexplore.ieee.org/document/8588168. |
| [29] | WANG Dilin, LIU Qiang. An Optimization View on Dynamic Routing between Capsules[C]// ACM. The 6th International Conference on Learning Representations. New York: ACM, 2018: 11-14. |
| [30] | YANG Jucheng, HAN Shujie, MAO Lei, et al. Overview of Capsule Network Model[J]. Journal of Shandong University (Engineering Science), 2019, 49(6): 1-10. |
| 杨巨成, 韩书杰, 毛磊, 等. 胶囊网络模型综述[J]. 山东大学学报(工学版), 2019, 49(6): 1-10. | |
| [31] | HINTON G E, SABOUR S, FROSST N. Matrix Capsules with EM Routing[C]// ACM. The 6th International Conference on Learning Representations. New York: ACM, 2018: 21-29. |
| [32] | KRIZHEVSKY A, HINTON G. Learning Multiple Layers of Features from Tiny Images[C]// IEEE. The Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2009: 2311-2320. |
| [33] | HAN Xiao, KASHIF R, ROLAND V. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms[EB/OL]. (2017-09-15)[2025-05-23]. https://doi.org/10.48550/arXiv.1708.07747. |
| [1] | 赵伟, 任潇宁, 薛吟兴. 基于集成学习的成员推理攻击方法[J]. 信息网络安全, 2024, 24(8): 1252-1264. |
| [2] | 戚晗, 王敬童, ABDULLAH Gani, 拱长青. 基于随机量子层的变分量子卷积神经网络鲁棒性研究[J]. 信息网络安全, 2024, 24(3): 363-373. |
| [3] | 冯光升, 蒋舜鹏, 胡先浪, 马明宇. 面向物联网的入侵检测技术研究新进展[J]. 信息网络安全, 2024, 24(2): 167-178. |
| [4] | 林怡航, 周鹏远, 吴治谦, 廖勇. 基于触发器逆向的联邦学习后门防御方法[J]. 信息网络安全, 2024, 24(2): 262-271. |
| [5] | 印杰, 陈浦, 杨桂年, 谢文伟, 梁广俊. 基于人工智能的物联网DDoS攻击检测[J]. 信息网络安全, 2024, 24(11): 1615-1623. |
| [6] | 陈宝刚, 张毅, 晏松. 民航空管信息系统用户多因子持续身份可信认证方法研究[J]. 信息网络安全, 2024, 24(11): 1632-1642. |
| [7] | 兰浩良, 王群, 徐杰, 薛益时, 张勃. 基于区块链的联邦学习研究综述[J]. 信息网络安全, 2024, 24(11): 1643-1654. |
| [8] | 王南, 袁也, 杨浩然, 文周之, 苏明, 刘晓光. 环保大数据在区块链中的隐私计算[J]. 信息网络安全, 2024, 24(10): 1515-1527. |
| [9] | 张子涵, 赖清楠, 周昌令. 深度学习框架模糊测试研究综述[J]. 信息网络安全, 2024, 24(10): 1528-1536. |
| [10] | 萨其瑞, 尤玮婧, 张逸飞, 邱伟杨, 马存庆. 联邦学习模型所有权保护方案综述[J]. 信息网络安全, 2024, 24(10): 1553-1561. |
| [11] | 宋玉涵, 祝跃飞, 魏福山. 一种基于AdaBoost模型的区块链异常交易检测方案[J]. 信息网络安全, 2024, 24(1): 24-35. |
| [12] | 薛羽, 张逸轩. 深层神经网络架构搜索综述[J]. 信息网络安全, 2023, 23(9): 58-74. |
| [13] | 王鹃, 张冲, 龚家新, 李俊娥. 基于机器学习的模糊测试研究综述[J]. 信息网络安全, 2023, 23(8): 1-16. |
| [14] | 许春根, 薛少康, 徐磊, 张盼. 基于安全两方计算的高效神经网络推理协议[J]. 信息网络安全, 2023, 23(7): 22-30. |
| [15] | 赵小林, 王琪瑶, 赵斌, 薛静锋. 基于机器学习的匿名流量分类方法研究[J]. 信息网络安全, 2023, 23(5): 1-10. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||