信息网络安全 ›› 2026, Vol. 26 ›› Issue (1): 38-48.doi: 10.3969/j.issn.1671-1122.2026.01.003

• 专题论文:网络主动防御 • 上一篇    下一篇

面向胶囊网络的成员推理风险评估

王亚杰1, 陆锦标1, 谭冬黎2, 范青3(), 祝烈煌1   

  1. 1.北京理工大学网络空间安全学院,北京 100081
    2.北京理工大学计算机学院,北京 100081
    3.华北电力大学控制与计算机工程学院,北京 102206
  • 收稿日期:2025-07-07 出版日期:2026-01-10 发布日期:2026-02-13
  • 通讯作者: 范青 qingfan@ncepu.edu.cn
  • 作者简介:王亚杰(1993—),男,河北,研究员,博士,CCF会员,主要研究方向为人工智能安全、数据安全、隐私保护|陆锦标(2002—),男,广东,硕士研究生,主要研究方向为联邦学习|谭冬黎(2002—),女,重庆,博士研究生,主要研究方向为人工智能安全、隐私保护|范青(1996—),女,山东,副教授,博士,CCF会员,主要研究方向为应用密码学、信息安全、安全协议设计|祝烈煌(1978—),男,浙江,教授,博士,CCF会员,主要研究方向为密码算法及安全协议、区块链、云计算安全、大数据
  • 基金资助:
    国家自然科学基金(62402040);国家自然科学基金(62302037);国家重点研发计划(2023YFF0905300);云南省重大科技专项(202502AD080008);云南省新型研发机构培育对象项目(202404BQ040148)

Member Inference Risk Assessment for Capsule Network

WANG Yajie1, LU Jinbiao1, TAN Dongli2, FAN Qing3(), ZHU Liehuang1   

  1. 1. School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing 100081, China
    2. School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
    3. School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
  • Received:2025-07-07 Online:2026-01-10 Published:2026-02-13

摘要:

为评估胶囊网络对成员推理攻击的防御能力,文章在FashionMNIST和CIFAR-10数据集上进行成员推理攻击实验,选用LeNet、VGG16和ResNet18作为影子模型。文章测试了影子模型数量对攻击效果的影响,探究了模型过拟合程度与成员推理攻击的关系,并验证了差分隐私对该攻击的防御效果。实验结果表明,成员推理攻击的攻击成功率高达94.8%,但在1~5个影子模型下,影子模型数量对攻击成功率的影响不显著。此外,攻击成功率随模型过拟合程度的增加而上升,虽然差分隐私可有效提升胶囊网络的防御能力,但会导致其训练时间增加133%以上。上述结果显示,针对胶囊网络的成员推理攻击行为及其防御规律与常见模型相似,因此,在胶囊网络的设计与应用中需充分考虑其安全风险。

关键词: 胶囊网络, 成员推理攻击, 机器学习, 鲁棒性

Abstract:

To evaluate the defense capability of capsule network against membership inference attacks, this study implemented membership inference attacks on the FashionMNIST and CIFAR-10 datasets and selected LeNet, VGG16, and ResNet18 as shadow models. Additionally, this study tested the impact of the number of shadow models on the attack effectiveness, explored the relationship between overfitting and membership inference attacks, and tested the defensive effect of differential privacy against membership inference attacks. The experimental results show that the attack success rate of membership inference attacks can reach up to 94.8%, and there is no significant advantage in the attack success rate when the number of shadow models is between 1 and 5. Furthermore, the study found that the effectiveness of membership inference attacks increased with the increase in overfitting, and the application of differential privacy technology can effectively enhance the defensive capability of the capsule network, but the training time of the capsule network will increase by more than 133%. These findings indicate that common strategies and defensive measures against membership inference attacks are applicable to capsule network, highlighting the importance of prioritizing security issues in the design and application of capsule network.

Key words: capsule network, membership inference attack, machine learning, robustness

中图分类号: