信息网络安全 ›› 2026, Vol. 26 ›› Issue (1): 24-37.doi: 10.3969/j.issn.1671-1122.2026.01.002
收稿日期:2025-10-10
出版日期:2026-01-10
发布日期:2026-02-13
通讯作者:
金波 作者简介:仝鑫(1995—),男,河南,博士研究生,CCF会员,主要研究方向为大语言模型安全|焦强(1981—),男,河北,硕士,主要研究方向为大数据和人工智能|王靖亚(1966—),女,北京,教授,硕士,主要研究方向为自然语言处理|袁得嵛(1986—),男,河北,副教授,博士,主要研究方向为信息内容安全与人工智能安全|金波(1970—),男,上海,研究员,博士,CCF会员,主要研究方向为行业大模型
基金资助:
TONG Xin1, JIAO Qiang2, WANG Jingya1, YUAN Deyu1, JIN Bo3(
)
Received:2025-10-10
Online:2026-01-10
Published:2026-02-13
摘要:
随着大语言模型(LLMs)的快速发展,其在公共安全领域的应用潜力不断凸显。然而,能力透明度不足、过度对齐导致可用性弱、幻觉生成及安全威胁等问题使其难以满足公共安全场景的高敏感性、高风险性和高精度需求。文章系统综述了公共安全领域LLMs的可信性问题:梳理其在风险预警、安全事件响应、内部管理与公共服务等任务中的应用现状,明确可信性定义并归纳出内部脆弱、外部威胁和伴生问题这3类风险;结合通用基础、专网域与互联网域的特点,提出任务适用、事实准确、安全完成、对抗鲁棒和责任追溯这5个可信维度,并以此为顺序综述了相应的增强策略与挑战,旨在推动LLMs在公共安全领域的可靠、安全与可控应用。
中图分类号:
仝鑫, 焦强, 王靖亚, 袁得嵛, 金波. 公共安全领域大语言模型的可信性研究综述:风险、对策与挑战[J]. 信息网络安全, 2026, 26(1): 24-37.
TONG Xin, JIAO Qiang, WANG Jingya, YUAN Deyu, JIN Bo. A Survey on the Trustworthiness of Large Language Models in the Public Security Domain: Risks, Countermeasures, and Challenges[J]. Netinfo Security, 2026, 26(1): 24-37.
表2
公共安全领域应用LLMs潜在的外部威胁
| AT 编号 | 渠道 | 风险点 | 攻击向量 | 典型影响 |
|---|---|---|---|---|
| AT-1 | 线上 交互 | 提示词 泄露 | 差分探针问句、翻译迭代 | 系统指令与过滤规则外泄,助攻后续攻击 |
| AT-2 | 线上 交互 | 越狱攻击 | 复杂提示拆词、编码、隐喻注入 | 输出暴恐、涉黄或内部规程,威胁内容 安全 |
| AT-3 | 线上 交互 | 目标劫持 | 上下文覆写、角色标签插入 | 将法律咨询重定向为其他非法目标 |
| AT-4 | 供应链 | 数据投毒 | 在回收的对话对或微调集插入后门样本 | 将触发词映射为非法输出,且随在线学习逐步放大 |
| AT-5 | 供应链 | 恶意 权重、LoRA | 发布带隐藏逻辑的微调权重或插件 | 内网加载后门模型,出现系统性偏向或泄密通道 |
| [1] | ZENG Qingbin, ZHAO Ruotong, MAO Jinzhu, et al. CrimeMind: Simulating Urban Crime with Multi-Modal LLM Agents[EB/OL]. [2025-07-19]. https://arxiv.org/abs/2506.05981. |
| [2] | LEE J, LIM P, HOOI B, et al. Multimodal Large Language Models for Phishing Webpage Detection and Identification[C]// IEEE.2024 APWG Symposium on Electronic Crime Research (eCrime). New York: IEEE, 2024: 1-13. |
| [3] | LIU Min, ZHANG Luxiang, PING Weiying, et al. Research on Multi-Stage Online Public Opinion-Driven Group Consensus Decision-Making Method Based on Large Language Model[J]. Chinese Journal of Management, 2025, 22(4): 750-759. |
| 刘敏, 张露祥, 平卫英, 等. 基于大语言模型的多阶段网络舆情驱动群体共识决策方法研究[J]. 管理学报, 2025, 22(4): 750-759. | |
| [4] | BOKOLO B G, ONYEHANERE P, OGEGBENE-ISE E, et al. Leveraging Machine Learning for Crime Intent Detection in Social Media Posts[C]// Springer Nature. International Conference on AI-Generated Content. Singapore: Springer Nature, 2023: 224-236. |
| [5] | LI Yanying, WANG Xinyu, WANG Xiao, et al. Traffic Anomaly Event Detection and Auxiliary Decision-Making Based on Large Language Models[J]. Chinese Journal of Intelligent Science and Technology, 2024, 6(3): 347-355. |
| 李炎英, 王新宇, 王晓, 等. 基于大语言模型的交通异常事件检测与辅助决策[J]. 智能科学与技术学报, 2024, 6(3): 347-355. | |
| [6] | CHEN Haoran, YI Dong, CAO Moyan, et al. A Benchmark for Crime Surveillance Video Analysis with Large Models[EB/OL]. [2025-07-03]. https://arxiv.org/abs/2502.09325. |
| [7] | CROWL L, DUTTA S, KHUDABUKHSH A R, et al. Measuring Criticism of the Police in the Local News Media Using Large Language Models[EB/OL]. [2025-09-20]. https://doi.org/10.1073/pnas.2418821122. |
| [8] | HALFORD E, WEBSTER A. Using ChatGPT to Evaluate Police Threats, Risk and Harm[EB/OL]. [2025-09-23]. https://doi.org/10.1016/j.ijlcj.2024.100686. |
| [9] | XING Xintao, CHEN Peng. Entity Extraction of Key Elements in 110 Police Reports Based on Large Language Models[EB/OL]. [2025-08-21]. https://doi.org/10.3390/app14177819. |
| [10] | RELINS S, BIRKS D, LLOYD C. Using Instruction-Tuned Large Language Models to Identify Indicators of Vulnerability in Police Incident Narratives[J]. Journal of Quantitative Criminology, 2025, 41(4): 1-38. |
| [11] | SCHWARTZ Y, BEN-SHIMOL L, MIMRAN D, et al. LLMcloudhunter: Harnessing LLMs for Automated Extraction of Detection Rules from Cloud-Based CTI[C]// ACM. Proceedings of the ACM on Web Conference 2025. New York: ACM, 2025: 1922-1941. |
| [12] | LEGG P, RYDER N, BOURTON S, et al. Advancements in Cyber Crime Investigations and Modern Data Analytics[M]. Boca Raton: CRC Press, 2024. |
| [13] | SHAHID A R, HASAN S M, KANKANAMGE M W, et al. WatchOverGPT: A Framework for Real-Time Crime Detection and Response Using Wearable Camera and Large Language Model[C]// IEEE. 2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC). New York: IEEE, 2024: 2189-2194. |
| [14] |
FARBER S. AI as a Decision Support Tool in Forensic Image Analysis: A Pilot Study on Integrating Large Language Models into Crime Scene Investigation Workflows[J]. Journal of Forensic Sciences, 2025, 70(3): 932-943.
doi: 10.1111/jfo.v70.3 URL |
| [15] | KIM H, KIM D, LEE J, et al. LAPIS: Language Model-Augmented Police Investigation System[C]// ACM. The 33rd ACM International Conference on Information and Knowledge Management. New York: ACM, 2024: 4637-4644. |
| [16] | MIN H, NOH B. TRACS-LLM: LLM-Based Traffic Accident Criminal Sentencing Prediction Focusing on Imprisonment, Probation, and Fines[EB/OL]. [2025-08-26]. https://doi.org/10.1007/s10506-025-09472-8. |
| [17] | PEI Bingsen, LI Xin, JIANG Zhangtao, et al. Research on Public Security Professional Small Sample Knowledge Extraction Method Based on Large Language Model[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(10): 2630-2642. |
|
裴炳森, 李欣, 蒋章涛, 等. 基于大语言模型的公安专业小样本知识抽取方法研究[J]. 计算机科学与探索, 2024, 18(10): 2630-2642.
doi: 10.3778/j.issn.1673-9418.2403039 |
|
| [18] | ADAMS I T. Large Language Models and Artificial Intelligence for Police Report Writing[EB/OL]. [2025-09-06]. https://www.crimrxiv.com/pub/c5lj2rmy/release/1. |
| [19] | SRBINOVSKA A, SENTHIL V, et al. Towards AI-Driven Policing: Interdisciplinary Knowledge Discovery from Police Body-Worn Camera Footage[EB/OL]. [2025-08-09]. https://arxiv.org/abs/2504.20007. |
| [20] | VIOLAKIS P. Leveraging Large Language Models for Enhanced Simulation-Based Learning in Police and Law Enforcement[EB/OL]. [2025-09-12]. https://doi.org/10.1093/police/paaf012. |
| [21] | LIANG Ruiwei, CAI Zijie, FANG Hui, et al. Instruction Tuning of Large Language Models for Official Document Generation[J]. Journal of Chinese Information Processing, 2025, 39(5): 164-176. |
| 梁瑞威, 蔡子杰, 方荟, 等. 基于大模型指令微调的公文生成方法[J]. 中文信息学报, 2025, 39(5): 164-176. | |
| [22] |
WANG Yun, HU Min, TA Na, et al. Large Language Models and Their Application in Government Affairs[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(4): 649-658.
doi: 10.16511/j.cnki.qhdxxb.2023.26.042 |
|
王昀, 胡珉, 塔娜, 等. 大语言模型及其在政务领域的应用[J]. 清华大学学报(自然科学版), 2024, 64(4): 649-658.
doi: 10.16511/j.cnki.qhdxxb.2023.26.042 |
|
| [23] | TENG Jie, HE Huanglan, HU Guangwei, et al. A Fine-Grained Sentiment Recognition Method for Online Government-Public Interaction Texts Based on Large Language Models[J]. Journal of Modern Information, 2025, 45(9): 58-70, 107. |
| 滕婕, 贺荒兰, 胡广伟, 等. 基于大语言模型的网络问政文本细粒度情感识别方法[J]. 现代情报, 2025, 45(9): 58-70, 107. | |
| [24] | ISO/IEC TS 5723: 2022. Trustworthiness—Vocabulary[EB/OL]. [2025-08-26]. https://www.iso.org/standard/81608.html. |
| [25] | European Commission. Ethics Guidelines For Trustworthy AI[EB/OL]. [2025-07-29]. https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai. |
| [26] | NIST. Artificial Intelligence Risk Management Framework (AI RMF 1.0)[EB/OL]. [2025-08-23]. https://doi.org/10.6028/NIST.AI.100-1. |
| [27] | Cyberspace Administration of China. Interim Measures for the Administration of Generative Artificial Intelligence Services. [EB/OL]. [2025-07-06]. https://www.gov.cn/zhengce/202311/content_6917778.htm. |
| 国家互联网信息办公室. 生成式人工智能服务管理暂行办法[EB/OL]. [2025-07-06]. https://www.gov.cn/zhengce/202311/content_6917778.htm. | |
| [28] | HUANG Lei, YU Weijiang, MA Weitao, et al. A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions[J]. ACM Transactions on Information Systems, 2025, 43(2): 1-55. |
| [29] | LI Tianle, ZHANG Ge, DO Q D, et al. Long-Context LLMs Struggle with Long In-Context Learning[EB/OL]. [2025-09-29]. https://arxiv.org/abs/2404.02060. |
| [30] | RANALDI L, PUCCI G. When Large Language Models Contradict Humans? Large Language Models’ Sycophantic Behaviour[EB/OL]. [2025-09-03]. https://arxiv.org/abs/2311.09410. |
| [31] | BYUN J, LIN Xiaofeng, WARD J, et al. Risk In Context: Benchmarking Privacy Leakage of Foundation Models in Synthetic Tabular Data Generation[EB/OL]. [2025-09-01]. https://arxiv.org/abs/2507.17066. |
| [32] | NAVIGLI R, CONIA S, ROSS B. Biases in Large Language Models: Origins, Inventory, and Discussion[J]. ACM Journal of Data and Information Quality, 2023, 15(2): 1-21. |
| [33] | OUYANG Long, WU J, JIANG Xu, et al. Training Language Models to Follow Instructions with Human Feedback[C]// NeurIPS Foundation. The 36th International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2022: 27730-27744. |
| [34] | LIN Yong, LIN Hangyu, XIONG Wei, et al. Mitigating the Alignment Tax of RLHF[C]// ACL. The 2024 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2024: 580-606. |
| [35] |
TONG Xin, JIN Bo, LIN Zhi, et al. CPSDbench: A Large Language Model Evaluation Benchmark and Baseline for Chinese Public Security Domain[J]. International Journal of Data Science and Analytics, 2025, 20(4): 3205-3234.
doi: 10.1007/s41060-024-00652-4 |
| [36] | PEREZ F, RIBEIRO I. Ignore Previous Prompt: Attack Techniques for Language Models[EB/OL]. [2025-09-03]. https://arxiv.org/abs/2211.09527. |
| [37] | CARLINI N, TRAMER F, WALLACE E, et al. Extracting Training Data from Large Language Models[C]// USENIX. The 30th USENIX Security Symposium (USENIX Security 21). Berkeley: USENIX, 2021: 2633-2650. |
| [38] | WAN A, WALLACE E, SHEN Sheng, et al. Poisoning Language Models during Instruction Tuning[C]// International Machine Learning Society. International Conference on Machine Learning. Cambridge: JMLR, 2023: 35413-35425. |
| [39] | KURITA K, MICHEL P, NEUBIG G. Weight Poisoning Attacks on Pretrained Models[C]// ACL. The 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 2793-2806. |
| [40] | LIU Hongyi, ZHONG Shaocheng, SUN Xintong, et al. LoRATK: LoRA Once, Backdoor Everywhere in the Share-and-Play Ecosystem[EB/OL]. [2025-09-03]. https://arxiv.org/abs/2403.00108. |
| [41] | HU Beizhe, SHENG Qiang, CAO Juan, et al. LLM-Generated Fake News Induces Truth Decay in News Ecosystem: A Case Study on Neural News Recommendation[C]// ACM.The 48th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2025: 435-445. |
| [42] | OECD. AI Principles[EB/OL]. [2025-09-03]. https://www.oecd.org/en/topics/sub-issues/ai-principles.html. |
| [43] | EUR-Lex. REGULATION (EU) 2024/1689 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL[EB/OL]. [2025-08-30]. https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=OJ:L_202401689. |
| [44] | ISO. ISO/IEC 42001: 2023 Information Technology — Artificial Intelligence — Management System[EB/OL]. [2025-09-09]. https://www.iso.org/standard/42001. |
| [45] | DENG Chunyuan, ZHAO Yilun, TANG Xiangru, et al. Benchmark Probing: Investigating Data Leakage In Large Language Models[ EB/OL]. [2025-09-13]. https://openreview.net/pdf?id=a34bgvner1. |
| [46] | TONG Xin, JIN Bo, WANG Jingya, et al. IDE: A Multi-Agent-Driven Iterative Framework for Dynamic Evaluation of LLMs[C]// IEEE. 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New York: IEEE, 2025: 1-5. |
| [47] | HU E J, WALLIS P, ALLEN-ZHU Z, et al. LoRA: Low-Rank Adaptation of Large Language Models[EB/OL]. [2025-09-25]. https://openreview.net/forum?id=nZeVKeeFYf9. |
| [48] | WANG Mingyang, STOLL A, LANGE L, et al. Bring Your Own Knowledge: A Survey of Methods for LLM Knowledge Expansion[EB/OL]. [2025-09-10]. https://arxiv.org/abs/2502.12598. |
| [49] | LI Xinyi, WANG Sai, ZENG Siqi, et al. A Survey on LLM-Based Multi-Agent Systems: Workflow, Infrastructure, and Challenges[EB/OL]. [2025-09-29]. https://doi.org/10.1007/s44336-024-00009-2. |
| [50] | TONG Xin, XIA Tian, YANG Menghui, et al. Research on Factuality Issues in Large Language Models: Evaluation, Enhancement, and Prospects[J]. Information Studies: Theory & Application, 2025, 48(7): 81-93. |
|
仝鑫, 夏天, 杨孟辉, 等. 大语言模型的事实性问题研究:评估、增强和展望[J]. 情报理论与实践, 2025, 48(7): 81-93.
doi: 10.16353/j.cnki.1000-7490.2025.07.010 |
|
| [51] | LI Yuanzhi, BUBECK S, ELDAN R, et al. Textbooks are All You Need ii:Phi-1.5 Technical Report[EB/OL]. [2025-08-12]. https://arxiv.org/abs/2309.05463. |
| [52] | BORGEAUD S, MENSCH A, HOFFMANN J, et al. Improving Language Models by Retrieving from Trillions of Tokens[C]// International Machine Learning Society. International Conference on Machine Learning. Cambridge: JMLR, 2022: 2206-2240. |
| [53] | HU Minda, HE Bowei, WANG Yufei, et al. Mitigating Large Language Model Hallucination with Faithful Finetuning[EB/OL]. [2025-09-02]. https://arxiv.org/abs/2406.11267. |
| [54] | SUN Zhiqing, SHEN Sheng, CAO Shengcao, et al. Aligning Large Multimodal Models with Factually Augmented RLHF[C]// ACL. Findings of the Association for Computational Linguistics ACL 2024. Stroudsburg: ACL, 2024: 13088-13110. |
| [55] | WEI J, HUANG Da, LU Yifeng, et al. Simple Synthetic Data Reduces Sycophancy in Large Language Models[EB/OL]. [2025-08-16]. https://arxiv.org/abs/2308.03958. |
| [56] | PAPADATOS H, FREEDMAN R. Linear Probe Penalties Reduce LLM Sycophancy[EB/OL]. [2025-09-06]. https://arxiv.org/abs/2412.00967. |
| [57] | LIU Xiao, LAI Hanyu, YU Hao, et al. WebGLM: Towards an Efficient Web-Enhanced Question Answering System with Human Preferences[C]// ACM.The 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 4549-4560. |
| [58] | LI L, CHEN Zhenhao, CHEN Guangyi, et al. Confidence Matters: Revisiting Intrinsic Self-Correction Capabilities of Large Language Models[EB/OL]. [2025-08-01]. https://arxiv.org/abs/2402.12563. |
| [59] | DASH S, REYMOND A, SPIRO E S, et al. Persona-Assigned Large Language Models Exhibit Human-Like Motivated Reasoning[EB/OL]. [2025-09-07]. https://arxiv.org/abs/2412.009672506. |
| [60] | STRONG J, MEN Qianhui, NOBLE A. Towards Human-AI Collaboration in Healthcare: Guided Deferral Systems with Large Language Models[C]// International Machine Learning Society. ICML 2024 Workshop on LLMs and Cognition. Cambridge: JMLR, 2024. |
| [61] | DAS S, JIN Lifeng, SONG Linfeng, et al. Entropy Guided Extrapolative Decoding to Improve Factuality in Large Language Models[C]// ACL.The 31st International Conference on Computational Linguistics. Stroudsburg: ACL, 2025: 6589-6600. |
| [62] | KRISHNA K, RAMPRASAD S, GUPTA P, et al. GenAudit: Fixing Factual Errors in Language Model Outputs with Evidence[EB/OL]. [2025-09-19]. https://arxiv.org/abs/2402.12566. |
| [63] | ARDITI A, OBESO O, SYED A, et al. Refusal in Language Models is Mediated by a Single Direction[C]// NeurIPS Foundation. The 38th International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2024: 136037-136083. |
| [64] | ONG I, ALMAHAIRI A, WU V, et al. RouteLLM: Learning to Route LLMs from Preference Data[EB/OL]. [2025-09-23]. https://openreview.net/forum?id=8sSqNntaMr. |
| [65] | RAHMAN M A, SHAHRIAR H, WU Fan, et al. Applying Pre-Trained Multilingual BERT in Embeddings for Improved Malicious Prompt Injection Attacks Detection[C]// IEEE. 2024 2nd International Conference on Artificial Intelligence, Blockchain, and Internet of Things (AIBThings). New York: IEEE, 2024: 1-7. |
| [66] | INAN H, UPASANI K, CHI J, et al. Llama Guard: LLM-Based Input-Output Safeguard for Human-AI Conversations[EB/OL]. [2025-08-09]. https://arxiv.org/abs/2312.06674. |
| [67] | HUNG K H, KO C Y, RAWAT A, et al. Attention Tracker: Detecting Prompt Injection Attacks in LLMs[EB/OL]. [2025-01-09]. https://arxiv.org/abs/2411.00348. |
| [68] | XUAN Zitao, MAO Xiaofeng, CHEN Da, et al. ShieldHead: Decoding-Time Safeguard for Large Language Models[C]// ACL.Findings of the Association for Computational Linguistics ACL 2025. Stroudsburg: ACL, 2025: 18129-18143. |
| [69] | TONG Xin, LIN Zhi, YUAN Lining, et al. An Agent Driven Framework for Enhancing Risk Instruction Mining in Large Language Models[EB/OL]. [2025-08-08]. https://link.cnki.net/urlid/10.1478.G2.20250704.1005.002. |
| 仝鑫, 林智, 袁立宁, 等. 智能体驱动的大语言模型风险指令挖掘增强方法[EB/OL]. [2025-08-08]. https://link.cnki.net/urlid/10.1478.G2.20250704.1005.002. | |
| [70] | RENAN S, AMAL G, et al. PROV-AGENT: Unified Provenance for Tracking AI Agent Interactions in Agentic Workflows[EB/OL]. [2025-08-06]. https://arxiv.org/abs/2508.02866. |
| [71] | PAN Leyi, LIU Aiwei, HE Zhiwen, et al. MarkLLM: An Open-Source Toolkit for LLM Watermarking[C]// ACL. The 2024 Conference on Empirical Methods in Natural Language Processing:System Demonstrations. Stroudsburg: ACL, 2024: 61-71. |
| [1] | 胡雨翠, 高浩天, 张杰, 于航, 杨斌, 范雪俭. 车联网安全自动化漏洞利用方法研究[J]. 信息网络安全, 2025, 25(9): 1348-1356. |
| [2] | 刘会, 朱正道, 王淞鹤, 武永成, 黄林荃. 基于深度语义挖掘的大语言模型越狱检测方法研究[J]. 信息网络安全, 2025, 25(9): 1377-1384. |
| [3] | 王磊, 陈炯峄, 王剑, 冯袁. 基于污点分析与文本语义的固件程序交互关系智能逆向分析方法[J]. 信息网络安全, 2025, 25(9): 1385-1396. |
| [4] | 张燕怡, 阮树骅, 郑涛. REST API设计安全性检测研究[J]. 信息网络安全, 2025, 25(8): 1313-1325. |
| [5] | 陈平, 骆明宇. 云边端内核竞态漏洞大模型分析方法研究[J]. 信息网络安全, 2025, 25(7): 1007-1020. |
| [6] | 酆薇, 肖文名, 田征, 梁中军, 姜滨. 基于大语言模型的气象数据语义智能识别算法研究[J]. 信息网络安全, 2025, 25(7): 1163-1171. |
| [7] | 张学旺, 卢荟, 谢昊飞. 基于节点中心性和大模型的漏洞检测数据增强方法[J]. 信息网络安全, 2025, 25(4): 550-563. |
| [8] | 顾欢欢, 李千目, 刘臻, 王方圆, 姜宇. 基于虚假演示的隐藏后门提示攻击方法研究[J]. 信息网络安全, 2025, 25(4): 619-629. |
| [9] | 解梦飞, 傅建明, 姚人懿. 基于LLM的多媒体原生库模糊测试研究[J]. 信息网络安全, 2025, 25(3): 403-414. |
| [10] | 秦中元, 王田田, 刘伟强, 张群芳. 大语言模型水印技术研究进展[J]. 信息网络安全, 2025, 25(2): 177-193. |
| [11] | 杨立群, 李镇, 韦超仁, 闫治敏, 仇勇鑫. 大语言模型引导的协议模糊测试技术研究[J]. 信息网络安全, 2025, 25(12): 1847-1862. |
| [12] | 孟辉, 毛琳琳, 彭聚智. 大语言模型驱动的无害化处理识别方法[J]. 信息网络安全, 2025, 25(12): 1990-1998. |
| [13] | 胡斌, 黑一鸣, 吴铁军, 郑开发, 刘文忠. 大模型安全检测评估技术综述[J]. 信息网络安全, 2025, 25(10): 1477-1492. |
| [14] | 胡隆辉, 宋虹, 王伟平, 易佳, 张智雄. 大语言模型在安全托管服务误报处理中的应用研究[J]. 信息网络安全, 2025, 25(10): 1570-1578. |
| [15] | 焦诗琴, 张贵杨, 李国旗. 一种聚焦于提示的大语言模型隐私评估和混淆方法[J]. 信息网络安全, 2024, 24(9): 1396-1408. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||