信息网络安全 ›› 2025, Vol. 25 ›› Issue (9): 1348-1356.doi: 10.3969/j.issn.1671-1122.2025.09.003

• 优秀论文 • 上一篇    下一篇

车联网安全自动化漏洞利用方法研究

胡雨翠(), 高浩天, 张杰, 于航, 杨斌, 范雪俭   

  1. 北京天融信网络安全技术有限公司,北京 100193
  • 收稿日期:2025-06-16 出版日期:2025-09-10 发布日期:2025-09-18
  • 通讯作者: 胡雨翠 hu_yucui@topsec.com.cn
  • 作者简介:胡雨翠(1984—),女,湖北,硕士,主要研究方向为信息安全和车联网安全|高浩天(1994—),男,河南,本科,主要研究方向为车联网安全|张杰(1994—),男,河北,本科,主要研究方向为车联网安全|于航(1997—),男,吉林,本科,主要研究方向为车联网安全|杨斌(1974—),男,陕西,本科,主要研究方向为网络安全、云安全和车联网安全|范雪俭(1984—),男,河南,硕士,主要研究方向为网络安全、工控安全和车联网安全
  • 基金资助:
    国家自然科学基金(59637050)

Automated Exploitation of Vulnerabilities in Vehicle Network Security

HU Yucui(), GAO Haotian, ZHANG Jie, YU Hang, YANG Bin, FAN Xuejian   

  1. Beijing Topsec Network Security Technology Co., Ltd., Beijing 100193, China
  • Received:2025-06-16 Online:2025-09-10 Published:2025-09-18

摘要:

随着车联网技术的快速发展,车载系统复杂性激增,其安全漏洞带来的危害性(如远程控制、隐私泄露、行车安全威胁)日益严峻。车联网软件漏洞的验证与修复已成为国内外安全研究的热点与难点。软件安全漏洞验证与修复高度依赖概念验证(PoC)漏洞利用代码,但人工构造效率低下且受限于漏洞报告的非结构化缺陷。因此,文章提出一种基于大语言模型(LLM)的自动化PoC漏洞利用代码生成与验证方法,将大语言模型(LLM)与漏洞利用的静态和动态分析技术相结合,生成候选PoC漏洞利用代码,并对其进行验证和改进,支持从漏洞描述到可验证PoC的端到端自动化生成。该方法可提升车联网漏洞挖掘研究的工作效率、降低人力成本,为车载系统安全检测提供针对性测试用例,并满足车联网自动化攻防演练的迫切需求。

关键词: 车联网安全, 概念验证, 漏洞分析, 自动化利用, 大语言模型

Abstract:

With the rapid development of connected vehicle technology, the complexity of in-vehicle systems has surged, and the hazards posed by security vulnerabilities (such as remote control, privacy breaches, and driving safety threats) have become increasingly severe. The verification and remediation of software vulnerabilities in connected vehicle have become a hot and challenging topic in security research both domestically and internationally. The validation and remediation of software security vulnerabilities heavily rely on proof-of-concept (PoC) exploit codes, but manual construction is inefficient and constrained by the unstructured deficiencies in vulnerability reports. Therefore, this article proposed an automated PoC exploit code generation and verification method based on large language models (LLMs). The innovation lied in combining large language models (LLMs) with static and dynamic analysis techniques for exploit generation, producing candidate PoC exploit codes and validating and refining them, enabling end-to-end automation from vulnerability descriptions to verifiable PoCs. This method can enhance the efficiency of vulnerability mining research in connected vehicle, reduce labor costs, provide targeted test cases for in-vehicle system security testing, and meet the urgent demand for automated attack-defense exercises in connected vehicle scenarios.

Key words: vehicle network security, proof of concept, vulnerability analysis, automatic exploit, large language model

中图分类号: