信息网络安全 ›› 2026, Vol. 26 ›› Issue (1): 115-124.doi: 10.3969/j.issn.1671-1122.2026.01.010

• 学术研究 • 上一篇    下一篇

一种基于P4的多模态网络控制与安全检测方案

李冬1,2, 高源1, 于俊清1,2(), 曾木虹1, 陈俊鑫1   

  1. 1.华中科技大学网络空间安全学院,武汉 430074
    2.华中科技大学网络与计算中心,武汉 430074
  • 收稿日期:2025-06-05 出版日期:2026-01-10 发布日期:2026-02-13
  • 通讯作者: 于俊清 yjqing@hust.edu.cn
  • 作者简介:李冬(1979—),男,湖北,高级工程师,博士,主要研究方向为网络安全、软件定义网络及可编程网络|高源(2000—),男,湖北,硕士研究生,主要研究方向为软件定义网络安全|于俊清(1975—),男,内蒙古,教授,博士,CCF会员,主要研究方向为数字媒体处理与检索、网络安全|曾木虹(2001—),男,湖北,硕士研究生,主要研究方向为软件定义网络安全|陈俊鑫(2002—)男,浙江,硕士研究生,主要研究方向为网络安全
  • 基金资助:
    国家重点研发计划(2022YFB2901202)

Polymorphic Network Control and Security Monitor Based on P4

LI Dong1,2, GAO Yuan1, YU Junqing1,2(), ZENG Muhong1, CHEN Junxin1   

  1. 1. School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    2. Network and Computation Center, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received:2025-06-05 Online:2026-01-10 Published:2026-02-13

摘要:

可编程网络技术通过软件定义和编程技术控制网络设备与数据报文,提升网络灵活性、可扩展性和自动化能力,为多模态网络发展奠定基础。文章基于可编程架构设计了身份、内容、地理位置、弹性地址空间、IPv4、IPv6等6种模态的数据报文路由转发机制,并在数据平面实现报文解析、路由寻址与转发。同时,构建多模态网络控制系统,支持报文解析、拓扑管理、流表生成与下发、网络测量等功能,并集成资源协调与调度算法,可实时分析网络状态、计算路由规则并下发流表。文章通过流量特征提取实现安全检测,并基于深度学习构建多模态流量时序模型,实现异常检测与识别,引入内生安全特性,保障系统可用性和可靠性。实验结果表明,文章方案可实现多模态网络统一通信与控制,支持多种模态;控制系统功能完善且性能稳定,拓扑规模超过2000节点,平均端到端时延小于100 ms;安全检测功能可实时识别异常流量与网络模态,其中,异常流量检测准确率达到96.49%,模态识别准确率达到99.72%。

关键词: 多模态网络, 软件定义网络, 网络测量, 异常检测

Abstract:

Programmable network technology controls network devices and data packets through software-defined and programming techniques, enhancing network flexibility, scalability, and automation capabilities, thereby laying a solid foundation for the development of multimodal networks. Based on a programmable architecture, this paper designed a data packet routing and forwarding mechanism for six modalities: identity, content, geographical location, elastic address space, IPv4, and IPv6, and implemented packet parsing, routing lookup, and forwarding at the data plane. Simultaneously, a multimodal network control system was constructed to support functions such as packet parsing, topology management, flow table generation and distribution, and network measurement. It integrated resource coordination and scheduling algorithms to analyze network status in real time, compute routing rules, and distribute flow tables. Through traffic feature extraction, this paper achieves security detection and builds a multimodal network traffic time-series model based on deep learning to realize anomaly detection and identification, introducing intrinsic security features to ensure system availability and reliability. Experimental results demonstrate that the proposed scheme enables unified communication and control of multimodal networks, supporting multiple modalities. The control system is functionally complete and performs stably, with a topology scale exceeding 2000 nodes and end-to-end latency below 100ms. The security detection function can identify abnormal traffic and network modalities in real time, with an anomaly detection accuracy rate of 96.49% and a modality recognition accuracy rate of 99.72%.

Key words: polymorphic network, software defined network, network measurement, anomaly detection

中图分类号: