信息网络安全 ›› 2026, Vol. 26 ›› Issue (1): 139-149.doi: 10.3969/j.issn.1671-1122.2026.01.012

• 学术研究 • 上一篇    下一篇

基于非局部机制的可逆神经网络视频隐写研究

钮可, 胡方锰(), 李军   

  1. 中国人民武装警察部队工程大学密码工程学院,西安 710086
  • 收稿日期:2025-08-06 出版日期:2026-01-10 发布日期:2026-02-13
  • 通讯作者: 胡方锰 2670884020@qq.com
  • 作者简介:钮可(1981—),男,浙江,教授,博士,主要研究方向为信息隐藏、多媒体安全|胡方锰(1998—),男,浙江,硕士研究生,主要研究方向为视频隐写|李军(1987—),男,湖南,讲师,博士,主要研究方向为多媒体信息隐藏
  • 基金资助:
    国家自然科学基金(62272478)

Research on Reversible Neural Network Video Steganography Based on Nonlocal Mechanism

NIU Ke, HU Fangmeng(), LI Jun   

  1. School of Cryptography Engineering, Engineering University of PAP, Xi’an 710086, China
  • Received:2025-08-06 Online:2026-01-10 Published:2026-02-13

摘要:

文章设计了一种可逆神经网络视频隐写模型。该模型通过优化设计的非局部机制函数,替代当前可逆神经网络中普遍应用的稠密型连接函数,有效解决了视频载体中提取出的秘密信息质量不高的问题;通过设计叠加态的加密和解密结构,提升了模型的安全性;通过优化可逆神经网络块的数量,提高了网络效率。实验结果表明,在利用可逆神经网络进行视频隐写时,与稠密型网络结构相比,采用非局部机制的可逆神经网络能够恢复更高质量的秘密信息,且嵌入秘密后视频的失真更少。同时,使用叠加态的加解密结构,在应用层面显著提升了可逆神经网络视频隐写的安全性。

关键词: 视频隐写, 可逆神经网络, 非局部机制

Abstract:

The article proposed a novel reversible neural network-based video steganography model. By replacing the widely used dense connection functions in current reversible neural networks with an optimized non-local mechanism function, the model effectively addressed the issue of low-quality secret information extraction from video carriers. Through the design of a superposition-based encryption and decryption structure, the model’s security was enhanced. Additionally, by optimizing the number of reversible neural network blocks, the network efficiency was improved. Experimental results demonstrate that, when utilizing reversible neural networks for video steganography, compared to dense network structures, the reversible neural network employing the nonlocal mechanism recovers secret information of higher quality, and the video distortion after secret embedding is reduced. Furthermore, the use of the superposition-based encryption and decryption structure significantly enhances the security of reversible neural network-based video steganography at the application level.

Key words: video steganography, reversible neural network, nonlocal mechanism

中图分类号: