Netinfo Security ›› 2025, Vol. 25 ›› Issue (12): 1878-1888.doi: 10.3969/j.issn.1671-1122.2025.12.004
Previous Articles Next Articles
PANG Shuchao1, LI Zhengxiao1, QU Junyi1, MA Ruhao1, CHEN Hechang2, DU Anan3(
)
Received:2025-10-05
Online:2025-12-10
Published:2026-01-06
Contact:
DU Anan
E-mail:anan.du@niit.edu.cn
CLC Number:
PANG Shuchao, LI Zhengxiao, QU Junyi, MA Ruhao, CHEN Hechang, DU Anan. Detecting Poisoned Samples for Untargeted Backdoor Attacks[J]. Netinfo Security, 2025, 25(12): 1878-1888.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2025.12.004
| [1] | HE Zeping, XU Jian, DAI Hua, et al. A Review of Federated Learning Application Technologies[J]. Netinfo Security, 2024, 24(12): 1831-1844. |
| 何泽平, 许建, 戴华, 等. 联邦学习应用技术研究综述[J]. 信息网络安全, 2024, 24(12):1831-1844. | |
| [2] | GU Huanhuan, LI Qianmu, LIU Zhen, et al. Research on Hidden Backdoor Prompt Attack Methods Based on False Demonstrations[J]. Netinfo Security, 2025, 25(4): 619-629. |
| 顾欢欢, 李千目, 刘臻, 等. 基于虚假演示的隐藏后门提示攻击方法研究[J]. 信息网络安全, 2025, 25(4):619-629. | |
| [3] | YAN Yukun, TANG Peng, CHEN Rui, et al. A Randomness Enhanced Bi-Level Optimization Defense Method against Data Poisoning Backdoor Attacks[J]. Netinfo Security, 2025, 25(7): 1074-1091. |
| 闫宇坤, 唐朋, 陈睿, 等. 面向数据投毒后门攻击的随机性增强双层优化防御方法[J]. 信息网络安全, 2025, 25(7):1074-1091. | |
| [4] |
VICE J, AKHTAR N, HARTLEY R, et al. Bagm: A Backdoor Attack for Manipulating Text-To-Image Generative Models[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 4865-4880.
doi: 10.1109/TIFS.2024.3386058 URL |
| [5] |
WU Yi, CHEN Jiayi, LEI Tianbao, et al. Web 3.0 Security: Backdoor Attacks in Federated Learning-Based Automatic Speaker Verification Systems in the 6G Era[J]. Future Generation Computer Systems, 2024, 160: 433-441.
doi: 10.1016/j.future.2024.06.022 URL |
| [6] | LIU Tao, ZHANG Yuhang, FENG Zhu, et al. Beyond Traditional Threats: A Persistent Backdoor Attack on Federated Learning[C]// AAAI. The AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2024: 21359-21367. |
| [7] |
LI Yiming, JIANG Yong, LI Zhifeng, et al. Backdoor Learning: A Survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 35(1): 5-22.
doi: 10.1109/TNNLS.2022.3182979 URL |
| [8] | QI Xiangyu, XIE Tinghao, WANG Jiachen, et al. Towards a Proactive ML Approach for Detecting Backdoor Poison Samples[C]// USENIX. The 32nd USENIX Security Symposium (USENIX Security 23). Berkeley: USENIX, 2023: 1685-1702. |
| [9] | GUO Junfeng, LI Yiming, CHEN Xun, et al. SCALE-UP: An Efficient Black-Box Input-Level Backdoor Detection via Analyzing Scaled Prediction Consistency[EB/OL]. (2023-02-19)[2025-09-10]. https://doi.org/10.48550/arXiv.2302.03251. |
| [10] | ZHANG Zihan, LAI Qingnan, ZHOU Changling. Survey on Fuzzing Test in Deep Learning Frameworks[J]. Netinfo Security, 2024, 24(10): 1528-1536. |
| 张子涵, 赖清楠, 周昌令. 深度学习框架模糊测试研究综述[J]. 信息网络安全, 2024, 24(10):1528-1536. | |
| [11] | GU Tianyu, DOLAN-GAVITT B, GARG S. BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain[EB/OL]. (2019-03-11)[2025-09-10]. https://doi.org/10.48550/arXiv.1708.06733. |
| [12] | CHEN Xinyun, LIU Chang, LI Bo, et al. Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning[EB/OL]. (2017-12-15) [2025-09-10]. https://doi.org/10.48550/arXiv.1712.05526. |
| [13] | LI Yiming, BAI Yang, JIANG Yong, et al. Untargeted Backdoor Watermark: Towards Harmless and Stealthy Dataset Copyright Protection[J]. Advances in Neural Information Processing Systems, 2022, 35: 13238-13250. |
| [14] | TURNER A, TSIPRAS D, MADRY A. Label-Consistent Backdoor Attacks[EB/OL]. (2019-12-06)[2025-09-10]. https://doi.org/10.48550/arXiv.1912.02771. |
| [15] | LI Yuezun, LI Yiming, WU Baoyuan, et al. Invisible Backdoor Attack with Sample-Specific Triggers[C]// IEEE. The IEEE/CVF International Conference on Computer Vision (ICCV). New York: IEEE, 2021: 16463-16472. |
| [16] | HE Ke, WANG Jianhua, YU Dan, et al. Adaptive Sampling-Based Machine Unlearning Method[J]. Netinfo Security, 2025, 25(4): 630-639. |
| 何可, 王建华, 于丹, 等. 基于自适应采样的机器遗忘方法[J]. 信息网络安全, 2025, 25(4):630-639. | |
| [17] | GUO Junfeng, LI Ang, LIU Cong. AEVA: Black-Box Backdoor Detection Using Adversarial Extreme Value Analysis[EB/OL]. (2022-04-24) [2025-09-10]. https://doi.org/10.48550/arXiv.2110.14880. |
| [18] | LI Yiming, ZHAI Tongqing, JIANG Yong, et al. Backdoor Attack in the Physical World[EB/OL]. (2021-04-24)[2025-09-10]. https://doi.org/10.48550/arXiv.2104.02361. |
| [19] | MIRZA M, OSINDERO S. Conditional Generative Adversarial Nets[EB/OL]. (2014-11-06)[2025-09-10]. https://doi.org/10.48550/arXiv.1411.1784. |
| [20] | RADFORD A, METZ L, CHINTALA S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[EB/OL]. (2016-01-07)[2025-09-10]. https://doi.org/10.48550/arXiv.1511.06434. |
| [21] | SOHN K, YAN Xinchen, LEE H. Learning Structured Output Representation Using Deep Conditional Generative Models[C]// NIPS. Advances in Neural Information Processing Systems (NIPS). Cambridge: MIT, 2015: 3483-3491. |
| [22] | VAN D O A, VINYALS O, KAVUKCUOGLU K. Neural Discrete Representation Learning[C]// NIPS. Advances in Neural Information Processing Systems (NIPS). Cambridge: MIT, 2017: 6309-6318. |
| [23] | HO J, JAIN A, ABBEEL P. Denoising Diffusion Probabilistic Models[C]// NIPS. Advances in Neural Information Processing Systems (NIPS). Cambridge: MIT, 2020: 6840-6851. |
| [24] | NICHOL A, DHARIWAL P, RAMESH A, et al. GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models[EB/OL]. (2022-03-08)[2025-09-10]. https://doi.org/10.48550/arXiv.2112.10741. |
| [25] | ROMBACH R, BLATTMANN A, LORENZ D, et al. High-Resolution Image Synthesis with Latent Diffusion Models[C]// IEEE. The IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2022: 10684-10695. |
| [26] | WANG Bolun, YAO Yuanshun, SHAN S, et al. Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks[C]// IEEE. 2019 IEEE Symposium on Security and Privacy (SP). New York: IEEE, 2019: 707-723. |
| [27] | CHEN B, CARVALHO W, BARACALDO N, et al. Detecting Backdoor Attacks on Deep Neural Networks by Activation Clustering[EB/OL]. (2018-11-09)[2025-09-10]. https://doi.org/10.48550/arXiv.1811.03728. |
| [28] | BANSAL A, BORGNIA E, CHU H M, et al. Cold Diffusion: Inverting Arbitrary Image Transforms without Noise[C]// NeurIPS. Advances in Neural Information Processing Systems (NeurIPS). Cambridge: MIT, 2023: 41259-41282. |
| [1] | XU Ruzhi, WU Xiaoxin, LYU Changran. Research on Transformer-Based Super-Resolution Network Adversarial Sample Defense Method [J]. Netinfo Security, 2025, 25(9): 1367-1376. |
| [2] | CHEN Yonghao, CAI Manchun, ZHANG Yiwen, PENG Shufan, YAO Lifeng, ZHU Yi. A Multi-Scale and Multi-Level Feature Fusion Approach for Deepfake Face Detection [J]. Netinfo Security, 2025, 25(9): 1456-1464. |
| [3] | WANG Xinmeng, CHEN Junbao, YANG Yitao, LI Wenjin, GU Dujuan. Bayesian Optimized DAE-MLP Malicious Traffic Identification Model [J]. Netinfo Security, 2025, 25(9): 1465-1472. |
| [4] | JIN Zhigang, LI Zimeng, CHEN Xuyang, LIU Zepei. Review of Network Intrusion Detection System for Unbalanced Data [J]. Netinfo Security, 2025, 25(8): 1240-1253. |
| [5] | WANG Gang, GAO Yunpeng, YANG Songru, SUN Litao, LIU Naiwei. A Survey on Deep Learning-Based Encrypted Malicious Traffic Detection Methods [J]. Netinfo Security, 2025, 25(8): 1276-1301. |
| [6] | FENG Wei, XIAO Wenming, TIAN Zheng, LIANG Zhongjun, JIANG Bin. Research on Semantic Intelligent Recognition Algorithms for Meteorological Data Based on Large Language Models [J]. Netinfo Security, 2025, 25(7): 1163-1171. |
| [7] | ZHANG Xinglan, TAO Kejin. Universal Perturbations Generation Method Based on High-Level Features and Important Channels [J]. Netinfo Security, 2025, 25(5): 767-777. |
| [8] | JIN Zengwang, JIANG Lingyang, DING Junyi, ZHANG Huixiang, ZHAO Bo, FANG Pengfei. A Review of Research on Industrial Control System Security [J]. Netinfo Security, 2025, 25(3): 341-363. |
| [9] | CHEN Hongsong, LIU Xinrui, TAO Zimei, WANG Zhiheng. A Survey of Anomaly Detection Model for Time Series Data Based on Deep Learning [J]. Netinfo Security, 2025, 25(3): 364-391. |
| [10] | LI Hailong, CUI Zhian, SHEN Xieyang. Overview of Anomaly Analysis and Detection Methods for Network Traffic [J]. Netinfo Security, 2025, 25(2): 194-214. |
| [11] | WU Haoying, CHEN Jie, LIU Jun. Improved Neural Network Differential Distinguisher of Simon32/64 and Simeck32/64 [J]. Netinfo Security, 2025, 25(2): 249-259. |
| [12] | JIN Di, REN Hao, TANG Rui, CHEN Xingshu, WANG Haizhou. Research on Offensive Language Detection in Social Networks Based on Emotion-Assisted Multi-Task Learning [J]. Netinfo Security, 2025, 25(2): 281-294. |
| [13] | LI Guyue, ZHANG Zihao, MAO Chenghai, LYU Rui. A Cumulant-Deep Learning Fusion Model for Underwater Modulation Recognition [J]. Netinfo Security, 2025, 25(10): 1554-1569. |
| [14] | LIANG Fengmei, PAN Zhenghao, LIU Ajian. A Joint Detection Method for Physical and Digital Face Attacks Based on Common Forgery Clue Awareness [J]. Netinfo Security, 2025, 25(10): 1604-1614. |
| [15] | CHEN Xiaojing, TAO Yang, WU Baiqi, DIAO Yunfeng. Optimization Gradient Perception Adversarial Attack for Skeleton-Based Action Recognition [J]. Netinfo Security, 2024, 24(9): 1386-1395. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||