Netinfo Security ›› 2025, Vol. 25 ›› Issue (8): 1240-1253.doi: 10.3969/j.issn.1671-1122.2025.08.006
Previous Articles Next Articles
JIN Zhigang(
), LI Zimeng, CHEN Xuyang, LIU Zepei
Received:2025-06-11
Online:2025-08-10
Published:2025-09-09
CLC Number:
JIN Zhigang, LI Zimeng, CHEN Xuyang, LIU Zepei. Review of Network Intrusion Detection System for Unbalanced Data[J]. Netinfo Security, 2025, 25(8): 1240-1253.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2025.08.006
| 数据集 | 规模/条 | 数据分布情况 | 不平衡率(IR) |
|---|---|---|---|
| DARPA IDEVAL 1999[ | 约500万 | 已标注的攻击仅有200余次,数据严重不平衡 | 攻击流量内部IR约10,正常流量与攻击流量IR大于50 |
| NSL-KDD[ | 约20万 | 训练集中攻击流量占比约为46.5%,但少数类样本数量较少 | 攻击流量内部IR大于100(U2R攻击、R2L攻击数量不到 100次) |
| Kyoto 2006+[ | 约9300万 | 蜜罐流量子集中的攻击比例约为47%,但完整集攻击比例低于1% | 攻击流量内部IR大于100(U2R攻击数量不到100次) |
| CTU-13 Botnet[ | 约280万 | 标注的攻击约占1.45% | 正常流量与攻击流量IR大于100 |
| UNSW-NB15[ | 约250万 | 攻击流量约占12.65%,攻击类别内部失衡严重。 | 攻击流量内部IR大于100(Worms攻击一百余次) |
| UGR'16[ | 约169亿 | 攻击流量占比远小于1% | 攻击流量内部IR大于100(SSH scan攻击不到100次) |
| CICIDS-2017[ | 约312万 | 攻击流量约占20% | 攻击流量内部IR大于100(Heartbleed攻击不到100次) |
| CSE-CIC-IDS2018[ | 约1600万 | 攻击流量约占17% | 攻击流量内部IR大于100(Web Attacks千余次) |
| NF-UQ-NIDS-v2[ | 约7500万 | 攻击流量约占66%,攻击流量内部失衡 | 攻击流量内部IR大于100(Worms攻击百 余次) |
| 文献 | 所属 类别 | 数据集 | 方法或 模型 | 实验效果 | 部署可行性 |
|---|---|---|---|---|---|
| 文献[ | 欠采样 | 自定义 数据集 | RUS | 准确率可达99.05%,Recall可达99.00%,F1-Score可达99.00% | 该自定义数据集攻击样式仅覆盖端口扫描、DoS等,实际部署中需增量更新 |
| 文献[ | 过采样 | UNSW-NB15 / CICIDS2017 / CICIDS2018 | ROS/堆叠特征 嵌入 | 在UNSW上准确率可达99.95 %,Recall可达99.95%,F1-Score可达99.95%;在CIC-17上准确率可达99.99 %,Recall可达99.99%,F1-Score可达99.99%;在CIC-18上准确率可达99.94 %,Recall可达99.94%,F1-Score可达99.94% | 使用3个数据集进行评估,结果覆盖面广,可信度高,但训练推理过程离线,缺少流式概念 漂移评估 |
| 文献[ | 过采样 | CICIDS2017 | ADASYN | 原文中未提及准确率指标,Recall可达92.30%,F1-Score可达95.30% | 代码简单、易扩展,但当前训练模式为离线训练手动调参,实际部署性能还需 验证 |
| 文献[ | 混合 采样 | CICIDS2017 | ROS/GMM | 原文中未提及准确率、Recall指标,F1-Score为99.55% | 具有较强的实用性与部署潜力,但模型训练复杂、预处理复杂 |
| 文献[ | 混合 采样 | UNSW-NB15 | SMOTE/重复编辑最近邻欠采样 | 准确率可达89.24%,Recall可达90.36%,F1-Score未提及 | 仅使用单个数据集进行验证操作,横向对比准确率较差 |
| 文献[ | 数据 增强 | SWaT | CWGAN | 准确率可达98.52%,F1-Score与Recall指标 未提及 | 鲁棒性较强,结构较为轻量化,具有较强的部署潜力,但生成模型在时序依赖方面的处理较少 |
| 文献[ | 数据 增强 | NSL-KDD/UNSW-NB15/CICIDS2017 | VAE-CWGAN | 在NSL-KDD上准确率可达98.91 %,Recall可达98.91%,F1-Score可达98.91%;在UNSW上准确率可达87.58%,Recall可达87.58%,F1-Score可达88.39%;在CIC-IDS-2017上准确率可达99.79%,Recall可达99.79%,F1-Score可达99.79% | 具有良好的工程可迁移性,但未给出具体部署方案,部署中可能面临协议语义畸变问题 |
| 文献[ | 数据 增强 | NSL-KDD | CE-GAN | 原文中未提及准确率指标Recall可达99.83%,F1-Score可达99.83% | 采用条件聚合编码器,生成速度快,但在包级协议一致性上未给出验证 |
| 文献[ | 数据 增强 | NSL-KDD/CICIDS2017 | M2M- VAEGAN | 在CIC-IDS-2017上准确率可达99.45%,Recall可达99.45%,F1-Score可达99.45%;在NSL-KDD上准确率可达82.93%,Recall可达82.93%,F1-Score可达82.40% | 整体准确率提升较大、模型复杂度可控,适合轻量部署,但在动态网络环境中的表现未知。对数据预处理要求 较高 |
| 文献[ | 数据 增强 | NSL-KDD | 去噪扩散概率模型 | 准确率可达78.85%,Recall可达65.59%,F1-Score可达70.13% | 对DDPM的改进使其更适合处理流量中的高维稀疏分布,但DDPM对计算资源需求高,暂未验证在生产环境下的能力 |
| 文献 | 所属 类别 | 数据集 | 方法或模型 | 实验效果 | 部署可行性 |
|---|---|---|---|---|---|
| 文献[ | 集成 学习 | NSL-KDD | 双层结构ERT/Bagging | 准确率可达82.48%,Recall可达96.40%,F1-Score可达82.58% | 该工程成果提高了模型的泛化能力,但整体准确率偏低,且KNN计算开销较大,难以用于实时检测 |
| 文献[ | 集成 学习 | UNSW-NB2015 | 1D-CNN-BiLSTM /FL | 准确率最高可达81.80%,Recall可达57.50%,F1-Score可达82.2% | 在精度和对不平衡数据的鲁棒性上表现优越,但仍需提高模型的未知攻击检测 能力 |
| 文献[ | 集成 学习 | UCI与电网攻击数据集 | 双层结构/XGBoost-DNN | 准确率可达79.30%,Recall可达77.48%,F1-Score可达76.42% | 架构适配性强,多指标性能表现优秀,但DNN模型仍需较强计算资源,模型组合复杂性较高 |
| 文献[ | 损失函数设计 | KDDCup99 | WCE | 准确率可达97.86%,Recall可达99.98%,F1-Score可达98.04% | 训练稳定性良好,模型的非线性表达能力较强。但数据集过时、单一,且未考虑实时高发的流量场景 |
| 文献[ | 损失函数设计 | NSL-KDD | CFL | 准确率可达88.08%,Recall可达88.02%,F1-Score可达87.69% | 模型训练较为轻量化,训练过程可解释性较强。但未进行真实部署验证,且未评估部署成本与响应时间 |
| 文献[ | 代价敏感学习 | CIC-IDS-2018/ IoT-23 | CSL/ CTIAD | 在CIC-IDS-2018上准确率可达99.96%,Recall可达98.48%,F1-Score可达95.88%;在IoT-32上准确率可达99.99%,Recall可达99.93%,F1-Score可达99.96% | 该模型性能表现优异、模型结构合理、且计算资源要求较低,但模型的预处理流程复杂,且缺乏模型压缩与模型运算所需的时长统计,需要重新评估是否满足实时检测要求 |
| 文献[ | 代价敏感学习 | NSL-KDD/CIDDS-001/CIC-IDS-2017 | CSE-IDS(CSDNN +XGBOOST +RF) | 在NSL-KDD上准确率可达92.00%,Recall可达91.00%,F1-Score可达91.00%;在CIDDS-001上准确率可达99.00%,Recall可达99.00%,F1-Score可达99.00%;在CIC-IDS-2017上准确率可达92.00%,Recall可达86.00%,F1-Score可达92.00% | 该模型运行效率高,性能较强,可解释性较强。但缺乏完整实时在线性能测试,数据预处理较 复杂 |
| [1] | European Union Agency for Cybersecurity (ENISA). 2024 Report on the State of Cybersecurity in the Union- Condensed Version[EB/OL]. (2024-12-03)[2025-06-10]. https://www.enisa.europa.eu/sites/default/files/2024-11/2024%20Report%20on%20the%20State%20of%20Cybersecurity%20in%20the%20Union%20-%20Condensed%20version.pdf. |
| [2] | Office of the National Cyber Director. 2024 Report on the Cybersecurity Posture of the United States[EB/OL]. (2024-05-07)[2025-06-10]. https://bidenwhitehouse.archives.gov/wp-content/uploads/2024/05/2024-Report-on-the-Cybersecurity-Posture-of-the-United-States.pdf. |
| [3] | LIU Qixu, XIAO Juxin, TAN Yaokang, et al. Survey of Industrial Internet Traffic Analysis Technology[J]. Journal of Communications, 2024, 45(8): 221-237. |
| 刘奇旭, 肖聚鑫, 谭耀康, 等. 工业互联网流量分析技术综述[J]. 通信学报, 2024, 45(8):221-237. | |
| [4] | ABDELKHALEK A, MASHALY M. Addressing the Class Imbalance Problem in Network Intrusion Detection Systems Using Data Resampling and Deep Learning[J]. Journal of Supercomputing, 2023, 79(10): 10611-10644. |
| [5] | ZHOU Yu, YUE Xuezhen, LIU Xing, et al. A Natural Neighborhood Hypersphere Oversampling Method for Imbalanced Data Sets[J]. Journal of Harbin Institute of Technology, 2024, 56(12): 81-95. |
| 周玉, 岳学震, 刘星, 等. 不平衡数据集的自然邻域超球面过采样方法[J]. 哈尔滨工业大学学报, 2024, 56(12):81-95. | |
| [6] | BEDI P, GUPTA N, JINDAL V. I-SiamIDS: An Improved Siam-IDS for Handling Class Imbalance in Network-Based Intrusion Detection Systems[J]. Applied Intelligence, 2021, 51(2): 1133-1151. |
| [7] | FENG Guangsheng, JIANG Shunpeng, HU Xianlang, et al. New Research Progress on Intrusion Detection Techniques for the Internet of Things[J]. Netinfo Security, 2024, 24(2): 167-178. |
| 冯光升, 蒋舜鹏, 胡先浪, 等. 面向物联网的入侵检测技术研究新进展[J]. 信息网络安全, 2024, 24(2):167-178. | |
| [8] | WU Hao, HAO Jiajia, LU Yunlong. Research on Distributed Network Intrusion Detection System for IoT Based on Honeyfarm[J]. Journal of Communications, 2024, 45(1): 106-118. |
|
吴昊, 郝佳佳, 卢云龙. 物联网场景下基于蜜场的分布式网络入侵检测系统研究[J]. 通信学报, 2024, 45(1):106-118.
doi: 10.11959/j.issn.1000-436x.2024020 |
|
| [9] | SU Yishan, ZHANG Hehe, ZHANG Rui, et al. Review of Security for Underwater Wireless Sensor Networks[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1121-1133. |
| 苏毅珊, 张贺贺, 张瑞, 等. 水下无线传感器网络安全研究综述[J]. 电子与信息学报, 2023, 45(3):1121-1133. | |
| [10] | ZHANG Hao, XIE Dazhi, HU Yunsheng, et al. A Review of Network Anomaly Detection Based on Semi-Supervised Learning[J]. Netinfo Security, 2024, 24(4): 491-508. |
| 张浩, 谢大智, 胡云晟, 等. 基于半监督学习的网络异常检测研究综述[J]. 信息网络安全, 2024, 24(4):491-508. | |
| [11] | OZKAN M, SAMET R, ASLAN O, et al. A Comprehensive Systematic Literature Review on Intrusion Detection Systems[J]. IEEE Access, 2021, 9: 157727-157760. |
| [12] | AHMED U, NAZIR M, SARWAR A, et al. Signature-Based Intrusion Detection Using Machine Learning and Deep Learning Approaches Empowered with Fuzzy Clustering[J]. Scientific Reports, 2025, 15(1): 1-33. |
| [13] | ZHANG Weibao, LAZARO J P. A Survey on Network Security Traffic Analysis and Anomaly Detection Techniques[J]. International Journal of Emerging Technologies and Advanced Applications, 2024, 1(4): 8-16. |
| [14] | HADI H J, CAO Yue, LI Sifan, et al. Real-Time Collaborative Intrusion Detection System in UAV Networks Using Deep Learning[J]. IEEE Internet of Things Journal, 2024, 11(20): 33371-33391. |
| [15] | WU Xiaodong, JIN Zhigang, CHEN Xuyang, et al. Adversarial Learning-Augmented Incremental Intrusion Detection System[J]. Journal of Harbin Institute of Technology, 2024, 56(9): 31-37, 84. |
| 武晓栋, 金志刚, 陈旭阳, 等. 对抗学习辅助增强的增量式入侵检测系统[J]. 哈尔滨工业大学学报, 2024, 56(9):31-37,84. | |
| [16] | ARSHAD S, ASHRAF W, ASHRAF S, et al. Comparative Study of Machine Learning Techniques for Intrusion Detection on CICIDS-2017 Dataset[C]// IEEE. 2023 10th International Conference on Computing for Sustainable Global Development (INDIACom). New York: IEEE, 2023: 929-934. |
| [17] | YANG Yang, LIU Xiaoyu, WANG Dianli, et al. A CE-GAN Based Approach to Address Data Imbalance in Network Intrusion Detection Systems[EB/OL]. (2025-03-06)[2025-06-10]. https://www.nature.com/articles/s41598-025-90815-5. |
| [18] | LIU Qixu, CHEN Yanhui, NI Jieshuo, et al. Survey on Machine Learning-Based Anomaly Detection for Industrial Internet[J]. Journal of Computer Research and Development, 2022, 59(5): 994-1014. |
| 刘奇旭, 陈艳辉, 尼杰硕, 等. 基于机器学习的工业互联网入侵检测综述[J]. 计算机研究与发展, 2022, 59(5):994-1014. | |
| [19] | HAMID M H A, YUSOFF M, MOHAMED A. Survey on Highly Imbalanced Multi-Class Data[J]. International Journal of Advanced Computer Science and Applications, 2022, 13(6): 211-229. |
| [20] | DARPA. The 1999 DARPA Off-Line Intrusion Detection Evaluation[J]. Computer Networks, 2000, 34(4): 579-595. |
| [21] | TAVALLAEE M, BAGHERI E, LU W, et al. A Detailed Analysis of the KDD CUP 99 Data Set[C]// IEEE. Computational Intelligence for Security and Defense Applications. New York: IEEE, 2009: 1-6. |
| [22] | SONG J, TAKAKURA H, OKABE Y, et al. Statistical Analysis of Honeypot Data and Building of Kyoto 2006+ Dataset for NIDS Evaluation[C]// ACM. Proceedings of the First Workshop on Building Analysis Datasets and Gathering Experience Returns for Security. New York: ACM, 2011: 29-36. |
| [23] | SRINARAYANI K, PADMAVATHI B, KAVITHA D. Detection of Botnet Traffic Using Deep Learning Approach[C]// IEEE. 2023 International Conference on Sustainable Computing and Data Communication Systems. New York: IEEE, 2023: 201-206. |
| [24] | MOUSTAFA N, SLAY J.UNSW-NB15:A Comprehensive Data Set for Network Intrusion Detection Systems(UNSW-NB15 Network Data Set)[C]// IEEE. Military Communications and Information Systems Conference. New York: IEEE, 2015: 1-6. |
| [25] | MACIÁ-FERNÁNDEZ G, CAMACHO J, MAGÁN-CARRIÓN R, et al. UGR'16: A New Dataset for the Evaluation of Cyclostationarity-Based Network IDSs[J]. Computers & Security, 2018, 73: 411-424. |
| [26] | KURNIABUDI K, STIAWAN D, DARMAWIJOYO, et al. CICIDS-2017 Dataset Feature Analysis with Information Gain for Anomaly Detection[J]. IEEE Access, 2020, 8: 132911-132921. |
| [27] | GOCS L, JOHANYAK Z C. Identifying Relevant Features of CSE-CIC-IDS 2018 Dataset for the Development of an Intrusion Detection System[EB/OL]. (2023-07-20)[2025-06-10]. https://arxiv.org/abs/2307.11544v1. |
| [28] | SARHAN M. NF-UQ-NIDS-v2[EB/OL]. [2025-06-10]. https://espace.library.uq.edu.au/view/UQ:631a24a. |
| [29] | FOTOUHI S, ASADI S, KATTAN M W. A Comprehensive Data Level Analysis for Cancer Diagnosis on Imbalanced Data[EB/OL]. (2019-01-03)[2025-06-10]. https://www.sciencedirect.com/science/article/pii/S1532046418302302. |
| [30] | KUMAR, LALOTRA G S, SASIKALA P, et al. Addressing Binary Classification over Class Imbalanced Clinical Datasets Using Computationally Intelligent Techniques[EB/OL]. (2022-07-13)[2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/35885819/. |
| [31] | MCDERMOTT M B, ZHANG Haoran, HANSEN L H, et al. A Closer Look at AUROC and AUPRC under Class Imbalance[C]// Neural Information Processing Systems Foundation. Proceedings of the 38th International Conference on Neural Information Processing Systems(NIPS '24). New York: Curran Associates Inc, 2025: 44102-44163. |
| [32] | CHICCO D, JURMAN G.The Advantages of the Matthews Correlation Coefficient (MCC) over F1 Score and Accuracy in Binary Classification Evaluation[EB/OL]. (2020-01-02)[2025-06-10]. https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-6413-7. |
| [33] | ARIFIN M A S, STIAWAN D, SUPRAPTO B Y, et al. Oversampling and Undersampling for Intrusion Detection System in the Supervisory Control and Data Acquisition IEC 60870-5-104[J]. IET Cyber-Physical Systems: Theory & Applications, 2024, 9(3): 282-292. |
| [34] | TANIMOTO A, YAMADA S, TAKENOUCHI T, et al. Improving Imbalanced Classification Using Near-Miss Instances[EB/OL]. (2022-09-01)[2025-06-30]. https://www.sciencedirect.com/science/article/pii/S0957417422005280. |
| [35] | XU Zhongyuan, YANG Xiuhua, WANG Ye, et al. Network Intrusion Detection Algorithm for Imbalanced Datasets[J]. Journal of Jilin University (Information Science Edition), 2023, 41(6): 1112-1119. |
| 徐忠原, 杨秀华, 王业, 等. 面向不平衡数据集的网络入侵检测算法[J]. 吉林大学学报(信息科学版), 2023, 41(6):1112-1119. | |
| [36] | FARSHIDVARD A, HOOSHMAND F, MIRHASSANI S A. A Novel Two-Phase Clustering-Based Under-Sampling Method for Imbalanced Classification Problems[EB/OL]. (2023-03-01)[2025-06-10]. https://www.sciencedirect.com/science/article/abs/pii/S0957417422020218. |
| [37] | AHSAN R, SHI W, CORRIVEAU J-P. Network Intrusion Detection Using Machine Learning Approaches: Addressing Data Imbalance[J]. IET Cyber-Physical Systems, 2022, 7(1): 30-39. |
| [38] | LE T T H, SHIN Y, KIM M, et al. Towards Unbalanced Multiclass Intrusion Detection with Hybrid Sampling Methods and Ensemble Classification[EB/OL]. (2024-03-21)[2025-06-10]. https://www.sciencedirect.com/science/article/pii/S1568494624002916. |
| [39] | TALUKDER M A, ISLAM M, UDDIN M A, et al. Machine Learning-Based Network Intrusion Detection for Big and Imbalanced Data Using Oversampling, Stacking Feature Embedding and Feature Extraction[EB/OL]. (2024-02-22)[2025-06-10]. https://journalofbigdata.springeropen.com/articles/10.1186/s40537-024-00886-w. |
| [40] | WIDODO A O, SETIAWAN B, INDRASWARI R. Machine Learning-Based Intrusion Detection on Multi-Class Imbalanced Dataset Using SMOTE[J]. Procedia Computer Science, 2024, 234: 578-583. |
| [41] | CHEN Zhewei, ZHOU Linyue, YU Wenwen. ADASYN-Random Forest Based Intrusion Detection Model[C]// ACM. Proceedings of the 2021 4th International Conference on Signal Processing and Machine Learning. New York: ACM, 2021: 152-159. |
| [42] |
ALKHAWALDEH I M, ALBALKHI I, NASWHAN A J. Challenges and Limitations of Synthetic Minority Oversampling Techniques in Machine Learning[J]. World Journal of Methodology, 2023, 13(5): 373-378.
doi: 10.5662/wjm.v13.i5.373 pmid: 38229946 |
| [43] | GUO Santian, LIU Yi. Network Intrusion Detection Method Combining Class Balance and CNN[J]. Computer Applications and Software, 2023, 40(7): 326-332. |
| 郭三田, 柳毅. 一种类平衡和CNN结合的网络入侵检测方法[J]. 计算机应用与软件, 2023, 40(7):326-332. | |
| [44] | GONG Zhongyuan, JIANG Jinyun, JIANG Nan, et al. An Improved Hybrid Sampling Model for Network Intrusion Detection Based on Data Imbalance[C]// Springer. AIS&P:International Conference on Artificial Intelligence Security and Privacy. Heidelberg: Springer, 2024: 164-175. |
| [45] |
CHEN Hong, YOU Yuzhu, JIN Haibo, et al. Fusion of Improved Sampling Technology and SRFCNN-BiLSTM Intrusion Detection Method[J]. Computer Engineering and Applications, 2025, 61(9): 315-324.
doi: 10.3778/j.issn.1002-8331.2404-0028 |
|
陈虹, 由雨竹, 金海波, 等. 融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法[J]. 计算机工程与应用, 2025, 61(9):315-324.
doi: 10.3778/j.issn.1002-8331.2404-0028 |
|
| [46] | GUO Derui, XIE Yufei. Research on Network Intrusion Detection Model Based on Hybrid Sampling and Deep Learning[EB/OL]. (2025-03-04)[2025-06-10]. https://www.mdpi.com/1424-8220/25/5/1578. |
| [47] | SUN Bo, ZHOU Qian, CHEN Haiyan. Imbalanced Data Learning Approach with Class Overlap Degree as the Optimization Goal[J]. Control Theory & Applications, 2024, 41(11): 2139-2146. |
| 孙博, 周倩, 陈海燕. 以类重叠度为优化目标的不平衡数据学习方法[J]. 控制理论与应用, 2024, 41(11):2139-2146. | |
| [48] | AGUIAR G, KRAWCZYK B, CANO A. A Survey on Learning from Imbalanced Data Streams: Taxonomy, Challenges, Empirical Study, and Reproducible Experimental Framework[J]. Machine Learning, 2024, 113(7): 4165-4243. |
| [49] | WANG Huazhong, TIAN Zilei. Intrusion Detection Method of ICS Based on Improved CGAN Algorithm[J]. Netinfo Security, 2023, 23(1): 36-43. |
| 王华忠, 田子蕾. 基于改进CGAN算法的工控系统入侵检测方法[J]. 信息网络安全, 2023, 23(1):36-43. | |
| [50] | LIU Taotao, FU Yu, WANG Kun, et al. Network Traffic Anomaly Detection Method Based on VAE-CWGAN and Fusion of Statistical Importance of Feature[EB/OL]. (2024-02-26)[2025-06-10].http://kns.cnki.net/kcms/detail/11.2102.TN.20240223.1312.006.html. |
| 刘涛涛, 付钰, 王坤, 等. 基于VAE-CWGAN和特征统计重要性融合的网络流量异常检测方法[EB/OL]. (2024-02-26)[2025-06-10]. http://kns.cnki.net/kcms/detail/11.2102.TN.20240223.1312.006.html. | |
| [51] | KANG Fuyuan, FENG Tao, LIN Jiaqi. VAE-GAN-Guided Cross-Class Generation: A Class Imbalance Data Augmentation Method for Network Intrusion Detection[EB/OL]. (2025-05-22)[2025-06-10]. https://www.scilit.com/publications/9d16dd07de0fdc264a63f808e2213aed. |
| [52] | JIN Zhigang, DING Yu, WU Xiaodong, et al. Federated Dual Correction Intrusion Detection System: Efficient Aggregation for Heterogeneous Data[EB/OL]. (2025-02-12)[2025-06-10]. https://www.sciencedirect.com/science/article/abs/pii/S1389128625000842. |
| [53] | WANG Ziang, TANG Yanjun, WANG Zichen, et al. Research on Network Traffic Intrusion Detection Method Based on Denoising Diffusion Probability Model[J]. Journal of Information Security Research, 2024, 10(5): 421-430. |
| 王子昂, 汤艳君, 王子晨, 等. 基于去噪扩散概率模型的网络流量入侵检测方法研究[J]. 信息安全研究, 2024, 10(5):421-430. | |
| [54] | ZHOU Hongfang, PAN Heng, ZHENG Kangyun, et al. A Novel Oversampling Method Based on Wasserstein CGAN for Imbalanced Classification[EB/OL]. (2025-02-01)[2025-06-10]. https://cybersecurity.springeropen.com/articles/10.1186/s42400-024-00290-0. |
| [55] | JIANG Xi, LIU Shinan, GEMBER-JACOBSON A, et al. Generative, High-Fidelity Network Traces[C]// ACM. Proceedings of the 22nd ACM Workshop on Hot Topics in Networks, in HotNets '23. New York:ACM, 2023: 131-138. |
| [56] | NUKAVARAPU S K, AYYAT M, NADEEM T. MirageNet-Towards a GAN-Based Framework for Synthetic Network Traffic Generation[C]// IEEE.2022 IEEE Global Communications Conference(GLOBECOM 2022). New York: IEEE, 2022: 3089-3095. |
| [57] | LUER F, BOHM C. Anomaly Detection Using Generative Adversarial Networks: Reviewing Methodological Progress and Challenges[J]. ACM SIGKDD Explorations, 2024, 25(2): 29-41. |
| [58] | ZHANG Zichen, KONG Shanshan, XIAO Tianyun, et al. A Network Intrusion Detection Method Based on Bagging Ensemble[EB/OL]. (2024-07-05)[2025-06-10]. https://www.mdpi.com/2073-8994/16/7/850. |
| [59] | WEI Bo, HU Caifu, REN Ruibin. A Novel Method for Handling Imbalanced Data Distribution in NIDS[EB/OL]. (2024-11-20)[2025-06-10]. http://kns.cnki.net/kcms/detail/11.2422.TN.20241120.1323.019.html. |
| 魏波, 胡财富, 任芮彬. 面向不平衡数据的二阶段网络入侵检测新方法[EB/OL]. (2024-11-20)[2025-06-10]. http://kns.cnki.net/kcms/detail/11.2422.TN.20241120.1323.019.html. | |
| [60] | ZHANG Ziying, CHEN Yuwei, WANG Yuhua. An Intrusion Detection Architecture for ICS Based on XGBoost-DNN[J]. Journal of Harbin Engineering University, 2024, 45(11): 2243-2249. |
| 张子迎, 陈玉炜, 王宇华. 基于XGBoost-DNN的工业控制系统入侵检测架构[J]. 哈尔滨工程大学学报, 2024, 45(11):2243-2249. | |
| [61] | KHAN A A, CHAUDHARI O, CHANDRA R. A Review of Ensemble Learning and Data Augmentation Models for Class Imbalanced Problems[EB/OL]. (2024-06-15)[2025-06-10]. https://www.sciencedirect.com/science/article/pii/S0957417423032803. |
| [62] | HAJMOHAMMED M, CHOUNTAS P, CHAUSSAIET T J. A Concept Drift Based Approach to Evaluating Model Performance and Theoretical Lifespan[C]// IEEE. 2024 14th International Conference on Pattern Recognition Systems. New York: IEEE, 2024: 1-6. |
| [63] | DASH N, CHAKRAVARTY S, RATH A K, et al. An Optimized LSTM-Based Deep Learning Model for Anomaly Network Intrusion Detection[EB/OL]. (2025-01-10)[2025-06-10]. https://www.nature.com/articles/s41598-025-85248-z. |
| [64] |
LU Kezhong, CHEN Chaofan, CAI Huan, et al. Online Classification Algorithm for Concept Drift and Class Imbalance Data Stream[J]. Acta Electronica Sinica, 2022, 50(3): 585-597.
doi: 10.12263/DZXB.20210094 |
|
陆克中, 陈超凡, 蔡桓, 等. 面向概念漂移和类不平衡数据流的在线分类算法[J]. 电子学报, 2022, 50(3):585-597.
doi: 10.12263/DZXB.20210094 |
|
| [65] | ZHOU Ping, ZHANG Yu. A Review of Concept Drift Detection and Adaptation Methods from an Industrial Perspective[J]. Control and Decision, 2025, 40(6): 1774-1792. |
| 周平, 张宇. 基于工业视角的概念漂移检测与适应方法综述[J]. 控制与决策, 2025, 40(6):1774-1792. | |
| [66] | ZHOU Ziyun, HUANG Hong, FANG Binhao. Application of Weighted Cross-Entropy Loss Function in Intrusion Detection[J]. Journal of Computer and Communications, 2021, 9: 1-21. |
| [67] | KHANAM S, AHMEDY I, IDRIS M Y I, et al. Towards an Effective Intrusion Detection Model Using Focal Loss Variational Autoencoder for IoT[EB/OL]. (2022-08-04)[2025-06-10].https://www.mdpi.com/1424-8220/22/15/5822. |
| [68] | WANG Peng, SONG Yafei, WANG Xiaodan, et al. FATIDS: An IoT Intrusion Detection Method for Class-Imbalanced Samples[EB/OL]. (2024-07-22)[2025-06-10]. https://doi.org/10.13229/j.cnki.jdxbgxb.20240403. |
| 王鹏, 宋亚飞, 王晓丹, 等. FATIDS:面向类不平衡样本的物联网入侵检测方法[EB/OL]. (2024-07-22)[2025-06-10]. https://doi.org/10.13229/j.cnki.jdxbgxb.20240403. | |
| [69] | ZHANG Zhaoyi, LAI Yingxu, CHEN Ye, et al. Fast Tracing Method for Sybil Attack in VANETs[C]// IEEE. 2023 IEEE 98th Vehicular Technology Conference. New York: IEEE, 2023: 1-6. |
| [70] | LIAO Liyun, ZHANG Bolei, WU Lifa. IoT Anomaly Detection Model Based on Cost-Sensitive Learning[J]. Netinfo Security, 2023, 23(11): 94-103. |
| 廖丽云, 张伯雷, 吴礼发. 基于代价敏感学习的物联网异常检测模型[J]. 信息网络安全, 2023, 23(11):94-103. | |
| [71] | GUPTA N, JINDAL V, BEDI P. CSE-IDS: Using Cost-Sensitive Deep Learning and Ensemble Algorithms to Handle Class Imbalance[EB/OL]. (2021-10-17)[2025-06-10]. https://www.sciencedirect.com/science/article/abs/pii/S0167404821003230. |
| [72] | JIN Zhigang, CHEN Xuyang, LIU Zepei, et al. Incremental Intrusion Detection Mechanism Considering Cost-Sensitivity[EB/OL]. (2025-03-25)[2025-06-10]. http://kns.cnki.net/kcms/detail/23.1235.t.20250324.1711.006.html. |
| 金志刚, 陈旭阳, 刘泽培, 等. 考虑代价敏感性的增量式入侵检测机制[EB/OL]. (2025-03-25)[2025-06-10]. http://kns.cnki.net/kcms/detail/23.1235.t.20250324.1711.006.html. | |
| [73] | LEEVY J L, KHOSHGOFTAAR T M, PETER J M. Mitigating Class Imbalance for IoT Network Intrusion Detection: A Survey[C]// IEEE. 2021 IEEE the Seventh International Conference on Big Data Computing Service and Applications (BigDataService). New York: IEEE, 2021: 143-148. |
| [74] | ZHOU Weidong, XIA Chunhe, WANG Tianbo, et al. HIDIM: A Novel Framework of Network Intrusion Detection for Hierarchical Dependency and Class Imbalance[EB/OL]. (2024-10-30)[2025-06-10]. https://www.sciencedirect.com/science/article/abs/pii/S0167404824004607. |
| [75] |
ZHANG Yawen, ZHANG Yuchen, WU Yue, et al. Research on Improvement of Generation Adversarial Networks for Network Traffic Datasets Augmentation[J]. Computer Engineering and Applications, 2024, 60(18): 275-284.
doi: 10.3778/j.issn.1002-8331.2306-0022 |
|
张雅雯, 张玉臣, 吴越, 等. 面向网络流量数据增强的生成对抗网络改进研究[J]. 计算机工程与应用, 2024, 60(18):275-284.
doi: 10.3778/j.issn.1002-8331.2306-0022 |
| [1] | WANG Gang, GAO Yunpeng, YANG Songru, SUN Litao, LIU Naiwei. A Survey on Deep Learning-Based Encrypted Malicious Traffic Detection Methods [J]. Netinfo Security, 2025, 25(8): 1276-1301. |
| [2] | ZHANG Xinglan, TAO Kejin. Universal Perturbations Generation Method Based on High-Level Features and Important Channels [J]. Netinfo Security, 2025, 25(5): 767-777. |
| [3] | ZHANG Xuewang, LU Hui, XIE Haofei. A Data Augmentation Method Based on Graph Node Centrality and Large Model for Vulnerability Detection [J]. Netinfo Security, 2025, 25(4): 550-563. |
| [4] | JIN Zengwang, JIANG Lingyang, DING Junyi, ZHANG Huixiang, ZHAO Bo, FANG Pengfei. A Review of Research on Industrial Control System Security [J]. Netinfo Security, 2025, 25(3): 341-363. |
| [5] | CHEN Hongsong, LIU Xinrui, TAO Zimei, WANG Zhiheng. A Survey of Anomaly Detection Model for Time Series Data Based on Deep Learning [J]. Netinfo Security, 2025, 25(3): 364-391. |
| [6] | LI Hailong, CUI Zhian, SHEN Xieyang. Overview of Anomaly Analysis and Detection Methods for Network Traffic [J]. Netinfo Security, 2025, 25(2): 194-214. |
| [7] | WU Haoying, CHEN Jie, LIU Jun. Improved Neural Network Differential Distinguisher of Simon32/64 and Simeck32/64 [J]. Netinfo Security, 2025, 25(2): 249-259. |
| [8] | JIN Di, REN Hao, TANG Rui, CHEN Xingshu, WANG Haizhou. Research on Offensive Language Detection in Social Networks Based on Emotion-Assisted Multi-Task Learning [J]. Netinfo Security, 2025, 25(2): 281-294. |
| [9] | CHEN Xiaojing, TAO Yang, WU Baiqi, DIAO Yunfeng. Optimization Gradient Perception Adversarial Attack for Skeleton-Based Action Recognition [J]. Netinfo Security, 2024, 24(9): 1386-1395. |
| [10] | XU Ruzhi, ZHANG Ning, LI Min, LI Zixuan. Research on a High Robust Detection Model for Malicious Software [J]. Netinfo Security, 2024, 24(8): 1184-1195. |
| [11] | TIAN Zhao, NIU Yajie, SHE Wei, LIU Wei. A Reputation Evaluation Method for Vehicle Nodes in V2X [J]. Netinfo Security, 2024, 24(5): 719-731. |
| [12] | ZHANG Guanghua, LIU Yichun, WANG He, HU Boning. Defense Scheme for Removing Deep Neural Network Backdoors Based on JSMA Adversarial Attacks [J]. Netinfo Security, 2024, 24(4): 545-554. |
| [13] | XU Zirong, GUO Yanping, YAN Qiao. Malicious Software Adversarial Defense Model Based on Feature Severity Ranking [J]. Netinfo Security, 2024, 24(4): 640-649. |
| [14] | YANG Zhipeng, LIU Daidong, YUAN Junyi, WEI Songjie. Research on Network Local Security Situation Fusion Method Based on Self-Attention Mechanism [J]. Netinfo Security, 2024, 24(3): 398-410. |
| [15] | JIANG Rong, LIU Haitian, LIU Cong. Unsupervised Network Intrusion Detection Method Based on Ensemble Learning [J]. Netinfo Security, 2024, 24(3): 411-426. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||