Netinfo Security ›› 2025, Vol. 25 ›› Issue (2): 249-259.doi: 10.3969/j.issn.1671-1122.2025.02.006
Previous Articles Next Articles
WU Haoying1, CHEN Jie1,2(), LIU Jun3
Received:
2024-05-22
Online:
2025-02-10
Published:
2025-03-07
CLC Number:
WU Haoying, CHEN Jie, LIU Jun. Improved Neural Network Differential Distinguisher of Simon32/64 and Simeck32/64[J]. Netinfo Security, 2025, 25(2): 249-259.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2025.02.006
密码 | 轮数 | |||||
---|---|---|---|---|---|---|
Simon32/64 | 7 | 96.73 % | 99.22 % | 99.51 % | 99.16 % | 99.12 % |
Simon32/64 | 8 | 76.76 % | 77.36 % | 80.38 % | 85.46 % | 89.21 % |
Simon32/64 | 9 | 62.70 % | 64.38 % | 67.17 % | 62.84 % | 62.50 % |
Simeck32/64 | 7 | 98.75 % | 99.78 % | 99.81 % | 99.96 % | 99.99 % |
Simeck32/64 | 8 | 86.77 % | 91.38 % | 97.13 % | 97.31 % | 97.92 % |
Simeck32/64 | 9 | 67.26 % | 68.58 % | 67.95 % | 66.98 % | 66.90 % |
密码 | 轮数 | 数据复杂度 | 计算复杂度 | 攻击成功率 | 结果来源 |
---|---|---|---|---|---|
Simon32/64 | 11 | 100% (1000次攻击) | 文献[ | ||
Simon32/64 | 11 | — | 95.6% (1000次攻击) | 文献[ | |
Simon32/64 | 12 | 86% (100次攻击) | 本文 | ||
Simeck32/64 | 10 | 80% (50次攻击) | 文献[ | ||
Simeck32/64 | 12 | 97% (100次攻击) | 本文 |
[1] | BOGDANOV A, KNUDSEN L R, LEANDER G, et al. PRESENT: An Ultra-Lightweight Block Cipher[C]// Springer. Cryptographic Hardware and Embedded Systems-CHES 2007. Heidelberg: Springer, 2007: 450-466. |
[2] | WU Wenling, ZHANG Lei. LBlock: A Lightweight Block Cipher[C]// Springer. Applied Cryptography and Network Security (ACNS 2011). Heidelberg: Springer, 2011: 327-344. |
[3] | BEAULIEU R, SHORS D, SMITH J, et al. The Simon and Speck Families of Lightweight Block Ciphers[C]// IEEE. 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC). New York: IEEE, 2015: 1-6. |
[4] | YANG Gangqiang, ZHU Bo, SUDER V, et al. The Simeck Family of Lightweight Block Ciphers[C]// Springer. Cryptographic Hardware and Embedded Systems-CHES 2015. Heidelberg: Springer, 2015: 307-329. |
[5] | WANG Meiqin. Differential Cryptanalysis of Reduced-Round PRESENT[C]// Springer. Progress in Cryptology-AFRICACRYPT 2008. Heidelberg: Springer, 2008: 40-49. |
[6] | WANG Ning, WANG Xiaoyun, JIA Keting. Improved Impossible Differential Attack on Reduced-Round LBlock[C]// Springer. Information Security and Cryptology-ICISC 2015. Heidelberg: Springer, 2016: 136-152. |
[7] | LI Mingming, GUO Jiansheng, CUI Jingyi, et al. Impossible Differential Cryptanalysis of SPECK[C]// Springer. Trusted Computing and Information Security. Heidelberg: Springer, 2019: 16-31. |
[8] | SUN Ling, FU Kai, WANG Meiqin. Improved Zero-Correlation Cryptanalysis on SIMON[C]// Springer. Information Security and Cryptology. Heidelberg: Springer, 2016: 125-143. |
[9] | QIAO Kexin, HU Lei, SUN Siwei. Differential Analysis on Simeck and SIMON with Dynamic Key-Guessing Techniques[C]// Springer. Information Systems Security and Privacy. Heidelberg: Springer, 2017: 64-85. |
[10] | GOHR A. Improving Attacks on Round-Reduced Speck32/64 Using Deep Learning[C]// Springer. Advances in Cryptology-CRYPTO 2019. Heidelberg: Springer, 2019: 150-179. |
[11] | PAL D, MANDAL U, DAS A, et al. Deep Learning Based Differential Classifier of PRIDE and RC5[C]// Springer. Applications and Techniques in Information Security. Heidelberg: Springer, 2023: 46-58. |
[12] | JAIN A, KOHLI V, MISHRA G. Deep Learning-Based Differential Distinguisher for Lightweight Cipher PRESENT[EB/OL]. (2020-07-12)[2024-04-30]. https://eprint.iacr.org/2020/846, 2020-07-12/2023-1-17. |
[13] | HOU Zezhou, CHEN Shaozhen, REN Jiongjiong. Research and Application of Deep Learning on Differential Distinguisher of Block Cipher[J]. Journal of Software, 2022, 33(5): 1893-1906. |
侯泽洲, 陈少真, 任炯炯. 深度学习在分组密码差分区分器上的研究应用[J]. 软件学报, 2022, 33(5): 1893-1906. | |
[14] | ZHANG Liu, WANG Zilong, WANG Baocang. Improving Differential-Neural Cryptanalysis with Inception[EB/OL]. (2022-02-20)[2024-04-30]. https://eprint.iacr.org/2022/183, 2022-02-10/2023-1-17. |
[15] | BENAMIRA A, GERAULT D, PEYRIN T, et al. A Deeper Look at Machine Learning-Based Cryptanalysis[C]// Springer. Cryptology-EUROCRYPT 2021. Heidelberg: Springer, 2021: 805-835. |
[16] | BAKSI A. Machine Learning-Assisted Differential Distinguishers for Lightweight Ciphers[C]// Springer. Classical and Physical Security of Symmetric Key Cryptographic Algorithms. Heidelberg: Springer, 2022: 141-162. |
[17] | HOU Zezhou, REN Jiongjiong, CHEN Shaozhen. Improve Neural Distinguisher for Cryptanalysis[EB/OL]. (2021-08-06)[2024-04-30]. https://eprint.iacr.org/2021/1017, 2021-08-06/2023-1-17. |
[18] | CHEN Yi, SHEN Yantian, YU Hongbo, et al. A New Neural Distinguisher Considering Features Derived from Multiple Ciphertext Pairs[J]. The Computer Journal, 2023, 66(6): 1419-1433. |
[19] | FU Chaohui, DUAN Ming, WEI Qiang, et al. Polytopic Differential Attack Based on Deep Learning and Its Application[J]. Journal of Cryptologic Research, 2021, 8(4): 591-600. |
[20] | BIHAM E, SHAMIR A. Differential Cryptanalysis of DES-Like Cryptosystems[J]. Journal of Cryptology, 1991, 4(1): 63-72. |
[21] | TIESSEN T. Polytopic Cryptanalysis[C]// Springer. Cryptology-EUROCRYPT 2016. Heidelberg: Springer, 2016: 214-239. |
[22] | SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going Deeper with Convolutions[C]// IEEE. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2015: 1-9. |
[23] | YANG Xiaoxue, CHEN Jie, HAN Lidong. Application of Deep Learning in Differential Cryptanalysis of ARX Block Ciphers[J]. Journal of Cryptologic Research, 2022, 9(5): 923-935. |
[24] | SU Hengchuan, ZHU Xuanyong, MING Duan.Polytopic Attack on Round-Reduced Simon32/64 Using Deep Learning[C]// Springer. Information Security and Cryptology. Heidelberg: Springer, 2021: 3-20. |
[1] | LI Hailong, CUI Zhian, SHEN Xieyang. Overview of Anomaly Analysis and Detection Methods for Network Traffic [J]. Netinfo Security, 2025, 25(2): 194-214. |
[2] | JIN Di, REN Hao, TANG Rui, CHEN Xingshu, WANG Haizhou. Research on Offensive Language Detection in Social Networks Based on Emotion-Assisted Multi-Task Learning [J]. Netinfo Security, 2025, 25(2): 281-294. |
[3] | CHEN Xiaojing, TAO Yang, WU Baiqi, DIAO Yunfeng. Optimization Gradient Perception Adversarial Attack for Skeleton-Based Action Recognition [J]. Netinfo Security, 2024, 24(9): 1386-1395. |
[4] | XU Ruzhi, ZHANG Ning, LI Min, LI Zixuan. Research on a High Robust Detection Model for Malicious Software [J]. Netinfo Security, 2024, 24(8): 1184-1195. |
[5] | TIAN Zhao, NIU Yajie, SHE Wei, LIU Wei. A Reputation Evaluation Method for Vehicle Nodes in V2X [J]. Netinfo Security, 2024, 24(5): 719-731. |
[6] | ZHANG Guanghua, LIU Yichun, WANG He, HU Boning. Defense Scheme for Removing Deep Neural Network Backdoors Based on JSMA Adversarial Attacks [J]. Netinfo Security, 2024, 24(4): 545-554. |
[7] | XU Zirong, GUO Yanping, YAN Qiao. Malicious Software Adversarial Defense Model Based on Feature Severity Ranking [J]. Netinfo Security, 2024, 24(4): 640-649. |
[8] | YANG Zhipeng, LIU Daidong, YUAN Junyi, WEI Songjie. Research on Network Local Security Situation Fusion Method Based on Self-Attention Mechanism [J]. Netinfo Security, 2024, 24(3): 398-410. |
[9] | JIANG Rong, LIU Haitian, LIU Cong. Unsupervised Network Intrusion Detection Method Based on Ensemble Learning [J]. Netinfo Security, 2024, 24(3): 411-426. |
[10] | FENG Guangsheng, JIANG Shunpeng, HU Xianlang, MA Mingyu. New Research Progress on Intrusion Detection Techniques for the Internet of Things [J]. Netinfo Security, 2024, 24(2): 167-178. |
[11] | ZHAO Pengcheng, YU Junqing, LI Dong. An Optimal Algorithm for Traffic Scheduling in SRv6 Network Based on Deep Learning [J]. Netinfo Security, 2024, 24(2): 272-281. |
[12] | JIN Zhigang, DING Yu, WU Xiaodong. Federated Intrusion Detection Algorithm with Bilateral Correction Merging Gradient Difference [J]. Netinfo Security, 2024, 24(2): 293-302. |
[13] | ZHANG Xuan, WAN Liang, LUO Heng, YANG Yang. Automated Botnet Detection Method Based on Two-Stage Graph Learning [J]. Netinfo Security, 2024, 24(12): 1933-1947. |
[14] | YIN Jie, CHEN Pu, YANG Guinian, XIE Wenwei, LIANG Guangjun. Detection of DDoS Attacks in the Internet of Things Based on Artificial Intelligence [J]. Netinfo Security, 2024, 24(11): 1615-1623. |
[15] | WEI Jinxia, HUANG Xizhang, FU Yuhao, LI Jing, LONG Chun. Mining Traffic Detection Method Based on Global Feature Learning [J]. Netinfo Security, 2024, 24(10): 1506-1514. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||