Netinfo Security ›› 2025, Vol. 25 ›› Issue (9): 1456-1464.doi: 10.3969/j.issn.1671-1122.2025.09.013
Previous Articles Next Articles
CHEN Yonghao, CAI Manchun(
), ZHANG Yiwen, PENG Shufan, YAO Lifeng, ZHU Yi
Received:2024-12-09
Online:2025-09-10
Published:2025-09-18
CLC Number:
CHEN Yonghao, CAI Manchun, ZHANG Yiwen, PENG Shufan, YAO Lifeng, ZHU Yi. A Multi-Scale and Multi-Level Feature Fusion Approach for Deepfake Face Detection[J]. Netinfo Security, 2025, 25(9): 1456-1464.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2025.09.013
| 方法 | FF++ (C23) | Celeb-DF(V2) | Params/个 | 计算量/GFLOPs | ||
|---|---|---|---|---|---|---|
| ACC | AUC | ACC | AUC | |||
| MesoNet | 85.9% | 88.0% | — | — | — | — |
| Xception | 95.3% | 96.3% | — | 97.6% | 2.58×107 | 18.9 |
| ResNet | 93.2% | 95.4% | 96.9% | 98.6% | 4.46×107 | 23.6 |
| F3-Net | 97.5% | 98.1% | — | — | — | 67.3 |
| Cross Vit Net | 98.1% | 98.6% | 98.4% | 99.0% | 1.01×108 | — |
| M2TR | 97.9% | 99.5% | 98.3% | 99.4% | — | — |
| 本文方法 | 98.8% | 99.7% | 99.3% | 99.4% | 7.13×107 | 38.4 |
| [1] | NGUYEN T T, NGUYEN Q V H, NGUYEN D T, et al. Deep Learning for Deepfakes Creation and Detection: A Survey[EB/OL]. (2022-08-11)[2024-09-12]. https://arxiv.org/abs/1909.11573. |
| [2] | CHESNEY B, CITRON D. Deep Fakes: A Looming Challenge for Privacy, Democracy, and National Security[J]. California Law Review, 2019, 107: 1753-1820. |
| [3] | LI Xurong, JI Shouling, WU Chunming, et al. A Survey on Deepfakes and Detection Techniques[J]. Journal of Software, 2020, 32(2): 496-518. |
| 李旭嵘, 纪守领, 吴春明, 等. 深度伪造与检测技术综述[J]. 软件学报, 2020, 32(2): 496-518. | |
| [4] | TOLOSANA R, VERA-RODRIGUEZ R, FIERREZ J, et al. Deepfakes and Beyond: A Survey of Face Manipulation and Fake Detection[J]. Information Fusion, 2020, 64: 131-148. |
| [5] | GUO Cuicui, LUO Guibo, ZHU Yuesheng. A Detection Method for Facial Expression Reenacted Forgery in Videos[C]// SPIE. Tenth International Conference on Digital Image Processing (ICDIP 2018). San Diego: SPIE, 2018: 414-422. |
| [6] | KOOPMAN M, RODRIGUEZ A M, GERADTS Z. Detection of Deepfake Video Manipulation[C]// IAPR. The 20th Irish Machine Vision and Image Processing Conference (IMVIP). Heidelberg: Springer, 2018: 133-136. |
| [7] | MCClOSKEY S, ALBRIGHT M. Detecting GAN-Generated Imagery Using Saturation Cues[C]// IEEE. 2019 IEEE International Conference on Image Processing (ICIP). New York: IEEE, 2019: 4584-4588. |
| [8] | BOHAEK M, FARID H. Protecting World Leaders against Deep Fakes Using Facial, Gestural, and Vocal Mannerisms[EB/OL]. (2022-07-20)[2024-11-12]. https://www.nstl.gov.cn/paper_detail.html?id=1e2166894a6601a5f4ae6d8e93d36a18. |
| [9] | LI Yuezun, CHANG M, LYU Siwei. In Ictu Oculi: Exposing AI Created Fake Videos by Detecting Eye Blinking[C]// IEEE. 2018 IEEE International Workshop on Information Forensics and Security (WIFS). New York: IEEE, 2018: 1-7. |
| [10] | MATERN F, RIESS C, STAMMINGER M. Exploiting Visual Artifacts to Expose Deepfakes and Face Manipulations[C]// IEEE. 2019 IEEE Winter Applications of Computer Vision Workshops (WACVW). New York: IEEE, 2019: 83-92. |
| [11] | YANG Xin, LI Yuezun, LYU Siwei. Exposing Deep Fakes Using Inconsistent Head Poses[C]// IEEE. 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New York: IEEE, 2019: 8261-8265. |
| [12] | SUN Zekun, HAN Yujie, HUA Zeyu, et al. Improving the Efficiency and Robustness of Deepfakes Detection through Precise Geometric Features[C]// IEEE. The IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2021: 3609-3618. |
| [13] | PENG Shufan, CAI Manchun, MA Rui, et al. Deepfake Detection Algorithm for High-Frequency Components of Shallow Features[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1-11. |
| 彭舒凡, 蔡满春, 马瑞, 等. 面向浅层特征高频分量的深度伪造检测算法[J]. 激光与光电子进展, 2023, 60(10): 1-11. | |
| [14] | ZHAO Hanqing, ZHOU Wenbo, CHEN Dongdong, et al. Multi-Attentional Deepfake Detection[C]// IEEE. The IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2021: 2185-2194. |
| [15] | YANG Shaocong, WANG Jian, SUN Yunlian, et al. Multi-Level Features Global Consistency for Human Facial Deepfake Detection[J]. Journal of Image and Graphics, 2022, 27(9): 2708-2720. |
| 杨少聪, 王健, 孙运莲, 等. 多级特征全局一致性的伪造人脸检测[J]. 中国图象图形学报, 2022, 27(9): 2708-2720. | |
| [16] | AFCHAR D, NOZICK V, YAMAGISHI J, et al. Mesonet: A Compact Facial Video Forgery Detection Network[C]// IEEE. 2018 IEEE International Workshop on Information Forensics and Security (WIFS). New York: IEEE, 2018: 1-7. |
| [17] | NGUYEN H H, YAMAGISHI J, ECHIZEN I. Use of a Capsule Network to Detect Fake Images and Videos[EB/OL]. (2019-09-19)[2024-09-12]. https://arxiv.org/abs/1910.12467. |
| [18] | AMERINI I, GALTERI L, CALDELLI R, et al. Deepfake Video Detection through Optical Flow Based Cnn[C]// IEEE. The IEEE/CVF International Conference on Computer Vision Workshops. New York: IEEE, 2019: 1-10. |
| [19] | SABIR E, CHENG Jiaxin, JAISWAL A, et al. Recurrent Convolutional Strategies for Face Manipulation Detection in Videos[J]. Interfaces (GUI), 2019, 3(1): 80-87. |
| [20] | MI Zhongjie, JIANG Xinghao, SUN Tanfeng, et al. GAN-Generated Image Detection with Self-Attention Mechanism against GAN Generator Defect[J]. IEEE Journal of Selected Topics in Signal Processing, 2020, 14(5): 969-981. |
| [21] | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative Adversarial Nets[C]// NIPS.Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 2672-2680. |
| [22] | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale[EB/OL]. (2010-11-29)[2024-09-12]. https://arxiv.org/pdf/2010.11929/1000. |
| [23] | WODAJO D, EMIRE S A. Haricot Beans Flour: Effect of Varieties and Processing Methods to Favor the Utilization of Underconsumed Common Beans[J]. International Journal of Food Properties, 2022, 25(1): 1186-1202. |
| [24] | DOLHANSKY B, BITTON J, PFLAUM B, et al. The Deepfake Detection Challenge (DFDC) Dataset[EB/OL]. (2020-10-28)[2024-09-12]. https://arxiv.org/abs/2006.07397. |
| [25] | COCCOMINI D A, MESSINA N, GENNARO C, et al. Combining Efficientnet and Vision Transformers for Video Deepfake Detection[C]// Springer. Image Analysis and Processing-ICIAP 2022: 21st International Conference. Heidelberg: Springer, 2022: 219-229. |
| [26] | CHEN Xiangyu, WANG Xintao, ZHOU Jiantao, et al. Activating More Pixels in Image Super-Resolution Transformer[C]// IEEE. The IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2023: 22367-22377. |
| [27] | LIU Ze, LIN Yutong, CAO Yue, et al. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows[C]// IEEE. The IEEE/CVF International Conference on Computer Vision. New York: IEEE, 2021: 10012-10022. |
| [28] | ZHANG Kaipeng, ZHANG Zhanpeng, LI Zhifeng, et al. Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks[J]. IEEE Signal Processing Letters, 2016, 23(10): 1499-1503. |
| [29] | LIU Yichao, SHAO Zongru, HOFFMANN N. Global Attention Mechanism: Retain Information to Enhance Channel-Spatial Interactions[EB/OL]. (2021-06-21)[2024-09-12]. https://arxiv.org/abs/2112.05561. |
| [30] | ROSSLER A, COZZOLINO D, VERDOLIVA L, et al. Faceforensics++: Learning to Detect Manipulated Facial Images[C]// IEEE. The IEEE/CVF International Conference on Computer Vision. New York: IEEE, 2019: 1-11. |
| [31] | LI Yuezun, YANG Xin, SUN Pu, et al. Celeb-Df: A Large-Scale Challenging Dataset for Deepfake Forensics[C]// IEEE. The IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2020: 3207-3216. |
| [32] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep Residual Learning for Image Recognition[EB/OL]. (2016-08-16)[2024-09-12]. https://arxiv.org/abs/1512.03385. |
| [33] | WANG Junke, WU Zuxuan, OUYANG Wenhao, et al. M2tr: Multi-Modal Multi-Scale Transformers for Deepfake Detection[C]// ACM. The 2022 International Conference on Multimedia Retrieval. New York: ACM, 2022: 615-623. |
| [34] | QIAN Yuyang, YIN Guojun, SHENG Lu, et al. Thinking in Frequency: Face Forgery Detection by Mining Frequency-Aware Clues[C]// Springer. Computer Vision-ECCV 2020: 16th European Conference. Heidelberg: Springer, 2020: 86-103. |
| [1] | XU Ruzhi, WU Xiaoxin, LYU Changran. Research on Transformer-Based Super-Resolution Network Adversarial Sample Defense Method [J]. Netinfo Security, 2025, 25(9): 1367-1376. |
| [2] | WANG Xinmeng, CHEN Junbao, YANG Yitao, LI Wenjin, GU Dujuan. Bayesian Optimized DAE-MLP Malicious Traffic Identification Model [J]. Netinfo Security, 2025, 25(9): 1465-1472. |
| [3] | JIN Zhigang, LI Zimeng, CHEN Xuyang, LIU Zepei. Review of Network Intrusion Detection System for Unbalanced Data [J]. Netinfo Security, 2025, 25(8): 1240-1253. |
| [4] | WANG Gang, GAO Yunpeng, YANG Songru, SUN Litao, LIU Naiwei. A Survey on Deep Learning-Based Encrypted Malicious Traffic Detection Methods [J]. Netinfo Security, 2025, 25(8): 1276-1301. |
| [5] | ZHANG Xinglan, TAO Kejin. Universal Perturbations Generation Method Based on High-Level Features and Important Channels [J]. Netinfo Security, 2025, 25(5): 767-777. |
| [6] | JIN Zengwang, JIANG Lingyang, DING Junyi, ZHANG Huixiang, ZHAO Bo, FANG Pengfei. A Review of Research on Industrial Control System Security [J]. Netinfo Security, 2025, 25(3): 341-363. |
| [7] | CHEN Hongsong, LIU Xinrui, TAO Zimei, WANG Zhiheng. A Survey of Anomaly Detection Model for Time Series Data Based on Deep Learning [J]. Netinfo Security, 2025, 25(3): 364-391. |
| [8] | LI Hailong, CUI Zhian, SHEN Xieyang. Overview of Anomaly Analysis and Detection Methods for Network Traffic [J]. Netinfo Security, 2025, 25(2): 194-214. |
| [9] | WU Haoying, CHEN Jie, LIU Jun. Improved Neural Network Differential Distinguisher of Simon32/64 and Simeck32/64 [J]. Netinfo Security, 2025, 25(2): 249-259. |
| [10] | JIN Di, REN Hao, TANG Rui, CHEN Xingshu, WANG Haizhou. Research on Offensive Language Detection in Social Networks Based on Emotion-Assisted Multi-Task Learning [J]. Netinfo Security, 2025, 25(2): 281-294. |
| [11] | CHEN Xiaojing, TAO Yang, WU Baiqi, DIAO Yunfeng. Optimization Gradient Perception Adversarial Attack for Skeleton-Based Action Recognition [J]. Netinfo Security, 2024, 24(9): 1386-1395. |
| [12] | XU Kaiwen, ZHOU Yichao, GU Wenquan, CHEN Chen, HU Xiyuan. A Multi-Scale Feature Fusion Deepfake Detection Algorithm Based on Reconstruction Learning [J]. Netinfo Security, 2024, 24(8): 1173-1183. |
| [13] | XU Ruzhi, ZHANG Ning, LI Min, LI Zixuan. Research on a High Robust Detection Model for Malicious Software [J]. Netinfo Security, 2024, 24(8): 1184-1195. |
| [14] | TIAN Zhao, NIU Yajie, SHE Wei, LIU Wei. A Reputation Evaluation Method for Vehicle Nodes in V2X [J]. Netinfo Security, 2024, 24(5): 719-731. |
| [15] | ZHANG Guanghua, LIU Yichun, WANG He, HU Boning. Defense Scheme for Removing Deep Neural Network Backdoors Based on JSMA Adversarial Attacks [J]. Netinfo Security, 2024, 24(4): 545-554. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||