[1] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative Adversarial Networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
|
[2] |
KINGMA D P, WELLING M. An Introduction to Variational Autoencoders[J]. Foundations and Trends® in Machine Learning, 2019, 12(4): 307-392.
|
[3] |
PENG Shufan, CAI Manchun, LIU Xiaowen, et al. Deepfake Detection Algorithm Based on Image Fine-Grained Features[J]. Netinfo Security, 2022, 22(11): 77-84.
|
|
彭舒凡, 蔡满春, 刘晓文, 等. 基于图像细粒度特征的深度伪造检测算法[J]. 信息网络安全, 2022, 22(11): 77-84.
|
[4] |
ZI Bojia, CHANG Minghao, CHEN Jingjing, et al. WildDeepfake: A Challenging Real-World Dataset for Deepfake Detection[C]// ACM. Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 2382-2390.
|
[5] |
GU Qiqi, CHEN Shen, YAO Taiping, et al. Exploiting Fine-Grained Face Forgery Clues via Progressive Enhancement Learning[C]// AAAI. Proceedings of the AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2022, 36(1): 735-743.
|
[6] |
GU Zhihao, CHEN Yang, YAO Taiping, et al. Delving into the Local: Dynamic Inconsistency Learning for DeepFake Video Detection[C]// AAAI. Proceedings of the AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2022, 36(1): 744-752.
|
[7] |
LI Jiaming, XIE Hongtao, LI Jiahong, et al. Frequency-Aware Discriminative Feature Learning Supervised by Single-Center Loss for Face Forgery Detection[C]// IEEE. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2021: 6458-6467.
|
[8] |
CAO Junyi, MA Chao, YAO Taiping, et al. End-to-End Reconstruction-Classification Learning for Face Forgery Detection[C]// IEEE. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2022: 4113-4122.
|
[9] |
CHOI Y, CHOI M, KIM M, et al. StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation[C]// IEEE. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 8789-8797.
|
[10] |
ABDAL R, QIN Yipeng, WONKA P. Image2StyleGAN: How to Embed Images into the StyleGAN Latent Space?[C]// IEEE. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). New York: IEEE, 2019: 4432-4441.
|
[11] |
ZHAO Hanqing, WEI Tianyi, ZHOU Wenbo, et al. Multi-Attentional Deepfake Detection[C]// IEEE. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2021: 2185-2194.
|
[12] |
LI Jiaming, XIE Hongtao, LI Jiahong, et al. Frequency-Aware Discriminative Feature Learning Supervised by Single-Center Loss for Face Forgery Detection[C]// IEEE. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2021: 6458-6467.
|
[13] |
ZHAO Tianchen, XU Xiang, XU Mingze, et al. Learning Self-Consistency for Deepfake Detection[C]// IEEE. 2021 IEEE/CVF International Conference on Computer Vision (ICCV). New York: IEEE, 2021: 15023-15033.
|
[14] |
DONG Shichao, WANG Jin, LIANG Jianjun, et al. Explaining Deepfake Detection by Analysing Image Matching[C]// Springer. European Conference on Computer Vision. Heidelberg: Springer, 2022: 18-35.
|
[15] |
KHALID H, WOO S S. OC-FakeDect: Classifying Deepfakes Using One-Class Variational Autoencoder[C]// IEEE. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). New York: IEEE, 2020: 656-657.
|
[16] |
TAN Mingxing, LE Q V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks[C]// PMLR. International Conference on Machine Learning. New York: PMLR, 2019: 6105-6114.
|
[17] |
ROSSLER A, COZZOLINO D, VERDOLIVA L, et al. FaceForensics++: Learning to Detect Manipulated Facial Images[C]// IEEE. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). New York: IEEE, 2019: 1-11.
|
[18] |
DOLHANSKY B, BITTON J, PFLAUM B, et al. The DeepFake Detection Challenge (DFDC) Dataset[EB/OL]. (2020-06-12)[2024-04-30]. https://doi.org/10.48550/arXiv.2006.07397.
|
[19] |
LI Yuezun, YANG Xin, SUN Pu, et al. Celeb-DF: A Large-Scale Challenging Dataset for DeepFake Forensics[C]// IEEE. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2020: 3207-3216.
|
[20] |
DUFOUR N, GULLY A. Contributing Data to Deepfake Detection Research[EB/OL]. [2024-04-30]. https://ai.googleblog.com/2019/09/contributing-data-to-deepfake-detection.html.
|
[21] |
QIAN Yuyang, YIN Guojun, SHENG Lu, et al. Thinking in Frequency: Face Forgery Detection by Mining Frequency-Aware Clues[C]// Springer. European Conference on Computer Vision. Heidelberg: Springer, 2020: 86-103.
|
[22] |
SUN Ke, LIU Hong, YAO Taiping, et al. An Information Theoretic Approach For Attention-Driven Face Forgery Detection[C]// Springer. European Conference on Computer Vision. Heidelberg: Springer, 2022: 111-127.
|
[23] |
WANG Yuan, YU Kun, CHEN Chen, et al. Dynamic Graph Learning with Content-Guided Spatial-Frequency Relation Reasoning for Deepfake Detection[C]// IEEE. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2023: 7278-7287.
|
[24] |
YANG Ziming, LIANG Jian, XU Yuting, et al. Masked Relation Learning for DeepFake Detection[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 1696-1708.
|
[25] |
WANG Jian, DU Xiaoyu, CHENG Yu, et al. SI-Net: Spatial Interaction Network for Deepfake Detection[J]. Multimedia Systems, 2023, 29(5): 3139-3150.
|
[26] |
PANG Guilin, ZHANG Baopeng, TENG Zhu, et al. MRE-Net: Multi-Rate Excitation Network for Deepfake Video Detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(8): 3663-3676.
|
[27] |
SHI Zenan, CHEN Haipeng, CHEN Long, et al. Discrepancy-Guided Reconstruction Learning for Image Forgery Detection[EB/OL]. (2023-04-26)[2024-04-30]. https://arxiv.org/abs/2304.13349v2.
|
[28] |
HUANG Baojin, WANG Zhongyuan, YANG Jifan, et al. Implicit Identity Driven Deepfake Face Swapping Detection[C]// IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2023: 4490-4499.
|