| [1] |
MCMAHAN B H, MOORE E, RAMAGE D, et al. Communication-Efficient Learning of Deep Networks from Decentralized Data[C]// JMLR. Artificial intelligence and statistics. New York: JMLR, 2017: 1273-1282.
|
| [2] |
RAJKOMAR A, DEAN J, KOHANE I. Machine Learning in Medicine[J]. New England Journal of Medicine, 2019, 380(14): 1347-1358.
doi: 10.1056/NEJMra1814259
|
| [3] |
SUN Yu, LIU Zheng, CUI Jian, et al. Client-Side Gradient Inversion Attack in Federated Learning Using Secure Aggregation[J]. IEEE Internet of Things Journal, 2024, 11 (17): 28774-28786.
|
| [4] |
QI Tao, WU Fangzhao, WU Chuhan, et al. Differentially Private Knowledge Transfer for Federated Learning[EB/OL]. (2023-05-15)[2025-03-20]. https://doi.org/10.1038/s41467-023-38794-x.
|
| [5] |
SHAO Jiawei, WU Fangzhao, ZHANG Jun. Selective Knowledge Sharing for Privacy-Preserving Federated Distillation without a Good Teacher[EB/OL]. (2023-12-12)[2025-03-20]. https://doi.org/10.1038/s41467-023-44383-9.
|
| [6] |
HU Hongsheng, SALCIC Z, SUN Lichao, et al. Membership Inference Attacks on Machine Learning: A Survey[J]. ACM Computing Surveys, 2022, 54 (11s): 1-37.
|
| [7] |
LIU Lumin, ZHANG Jun, SONG Shuhang, et al. Communication-Efficient Federated Distillation with Active Data Sampling[C]// IEEE. ICC2022-IEEE International Conference on Communications. New York: IEEE, 2022: 201-206.
|
| [8] |
HAN Yu. A Review of Knowledge Distillation in Deep Neural Networks[J]. Computer Science and Applications, 2020, 10(9): 1625-1630.
|
| [9] |
VOIGT P, VON D B A. The EU General Data Protection Regulation (GDPR)[M]. Heidelberg: Springer, 2017.
|
| [10] |
PARK W, KIM D, LU Yan, et al. Relational Knowledge Distillation[C]// IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2019: 3967-3976.
|
| [11] |
GOU Jun, YU Bo, MAYBANK S J, et al. Knowledge Distillation: A Survey[J]. International Journal of Computer Vision, 2021, 129: 1789-1819.
|
| [12] |
NGUYEN Q, VALIZADEGAN H, HAUSKRECHT M. Learning Classification Models with Soft-Label Information[J]. Journal of the American Medical Informatics Association, 2014, 21(3): 501-508.
doi: 10.1136/amiajnl-2013-001964
pmid: 24259520
|
| [13] |
YANG Qiang, LIU Yang, CHEN Tianjian, et al. Federated Machine Learning: Concept and Applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): 1-19.
|
| [14] |
ZHU Hangyu, XU Jinjin, LIU Shiqing, et al. Federated Learning on Non-Iid Data: A Survey[J]. Neurocomputing, 2021, 465: 371-390.
|
| [15] |
OUADRHIRI A E, ABDELHADI A. Differential Privacy for Deep and Federated Learning: A Survey[J]. IEEE Access, 2022, 10: 22359-22380.
|
| [16] |
ITAHARA S, NISHIO T, KODA Y, et al. Distillation-Based Semi-Supervised Federated Learning for Communication-Efficient Collaborative Training with Non-Iid Private Data[J]. IEEE Transactions on Mobile Computing, 2021, 22: 191-205.
|
| [17] |
SHOKRI R, STRONATI M, SONG Congzheng, et al. Membership Inference Attacks against Machine Learning Models[C]// IEEE. IEEE Symposium on Security and Privacy (SP). New York: IEEE, 2017: 3-18.
|
| [18] |
LUO Zeren, ZHU Chuangwei, FANG Lujie, et al. An Effective and Practical Gradient Inversion Attack[J]. International Journal of Intelligent Systems, 2022, 37(11): 9373-9389.
|
| [19] |
JIANG Yingrui, ZHAO Xuejian, LI Hao, et al. A Personalized Federated Learning Method Based on Knowledge Distillation and Differential Privacy[EB/OL]. (2024-09-06)[2025-03-20]. https://doi.org/10.3390/electronics13173538.
|
| [20] |
WU Xiang, ZHANG Yongting, SHI Minyu, et al. An Adaptive Federated Learning Scheme with Differential Privacy Preserving[J]. Future Generation Computer Systems, 2022, 127: 362-372.
|