[1] |
XIONG Shiqiang, HE Daojing, WANG Zhendong, et al. A Review of Federated Learning and its Security and Privacy Protection[J]. Computer Engineering, 2024, 50(5): 1-15.
doi: 10.19678/j.issn.1000-3428.0067782
|
|
熊世强, 何道敬, 王振东, 等. 联邦学习及其安全与隐私保护研究综述[J]. 计算机工程, 2024, 50(5): 1-15.
doi: 10.19678/j.issn.1000-3428.0067782
|
[2] |
ACAR A, AKSU H, ULUAGAC A S, et al. A Survey on Homomorphic Encryption Schemes: Theory and Implementation[J]. ACM Computing Surveys (Csur), 2018, 51(4): 1-35.
|
[3] |
LI Xiang. On the Convergence of Fedavg on Non-IID Data[EB/OL]. (2020-06-25)[2024-09-15]. https://doi.org/10.48550/arXiv.1907.02189.
|
[4] |
ZHAO Yue. Federated Learning with Non-IID Data[EB/OL]. (2022-07-21)[2024-09-15]. https://doi.org/10.48550/arXiv.1806.00582.
|
[5] |
ABADI M, CHU A, GOODFELLOW I, et al. Deep Learning with Differential Privacy[C]// ACM. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2016: 308-318.
|
[6] |
DU Wenliang, ATALLAH M J. Secure Multi-Party Computation Problems and their Applications: A Review and Open Problems[C]// ACM.Proceedings of the 2001 Workshop on New Security Paradigms. New York: ACM, 2001: 13-22.
|
[7] |
HASHEMI H, WANG Yongqin, ANNAVARAM M. DarKnight: An Accelerated Framework for Privacy and Integrity Preserving Deep Learning Using Trusted Hardware[C]// ACM. MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture. New York: ACM, 2021: 212-224.
|
[8] |
MOHAMMADI N, BAI Jianan, FAN Qiang, et al. Differential Privacy Meets Federated Learning under Communication Constraints[J]. IEEE Internet of Things Journal, 2021, 9(22): 22204-22219.
|
[9] |
GONG Xuan, SONG Liangchen, VEDULA R, et al. Federated Learning with Privacy-Preserving Ensemble Attention Distillation[J]. IEEE Transactions on Medical Imaging, 2022, 42(7): 2057-2067.
|
[10] |
GAO Dashan, LIU Yang, HUANG Anbu, et al. Privacy-Preserving Heterogeneous Federated Transfer Learning[C]// IEEE. 2019 IEEE International Conference on Big Data (Big Data). New York: IEEE, 2019: 2552-2559.
|
[11] |
NOBLE M, BELLET A, DIEULEVEUT A. Differentially Private Federated Learning on Heterogeneous Data[C]// PMLR. International Conference on Artificial Intelligence and Statistics. New York: PMLR, 2022: 10110-10145.
|
[12] |
YANG Li, ZHU Lingbo, YU Yueming, et al. Review of Federal Learning and Offensive-Defensive Confrontation[J]. Netinfo Security, 2023, 23(12): 69-90.
|
|
杨丽, 朱凌波, 于越明, 等. 联邦学习与攻防对抗综述[J]. 信息网络安全, 2023, 23(12): 69-90.
|
[13] |
MAMMEN P M. Federated Learning: Opportunities and Challenges[EB/OL]. (2021-01-14)[2024-09-15]. https://doi.org/10.48550/arXiv.2101.05428.
|
[14] |
YANG Liuyan, HE Juanjuan, FU Yue, et al. Federated Learning for Medical Imaging Segmentation via Dynamic Aggregation on Non-IID Data Silos[J]. Electronics, 2023, 12(7): 1687-1707.
|
[15] |
LI Qinbin, DIAO Yiqun, CHEN Quan, et al. Federated Learning on Non-IId Data Silos: An Experimental Study[C]// IEEE. 2022 IEEE 38th International Conference on Data Engineering (ICDE). New York: IEEE, 2022: 965-978.
|
[16] |
DWORK C. Differential Privacy[C]// Springer. International Colloquium on Automata, Languages, and Programming. Heidelberg: Springer, 2006: 1-12.
|
[17] |
XU Ruzhi, DAI Lipeng, XIA Diya, et al. Research on Centralized Differential Privacy Algorithm for Federated Learning[J]. Netinfo Security, 2024, 24(1): 69-79.
|
|
徐茹枝, 戴理朋, 夏迪娅, 等. 基于联邦学习的中心化差分隐私保护算法研究[J]. 信息网络安全, 2024, 24(1): 69-79.
|
[18] |
GIRGIS A M, DATA D, DIGGAVI S, et al. Shuffled Model of Federated Learning: Privacy, Accuracy and Communication Trade-Offs[J]. IEEE Journal on Selected Areas in Information Theory, 2021, 2(1): 464-478.
|