Netinfo Security ›› 2024, Vol. 24 ›› Issue (1): 60-68.doi: 10.3969/j.issn.1671-1122.2024.01.006
Previous Articles Next Articles
ZHAO Jia1,2, YANG Bokai1,2(), RAO Xinyu1,2, GUO Yating1,2
Received:
2023-11-14
Online:
2024-01-10
Published:
2024-01-24
Contact:
YANG Bokai
E-mail:23120488@bjtu.edu.cn
CLC Number:
ZHAO Jia, YANG Bokai, RAO Xinyu, GUO Yating. Design and Implementation of Tor Traffic Detection Algorithm Based on Federated Learning[J]. Netinfo Security, 2024, 24(1): 60-68.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2024.01.006
[1] |
CHEN Hexiong, LUO Yuwei, WEI Yunkai, et al. Collaborative Detection Technology of SDN Abnormal Traffic Based on Federated Learning[J]. Computer Engineering, 2023, 49(3): 168-176.
doi: 10.19678/j.issn.1000-3428.0064310 |
陈何雄, 罗宇薇, 韦云凯, 等. 基于联邦学习的SDN异常流量协同检测技术[J]. 计算机工程, 2023, 49(3):168-176.
doi: 10.19678/j.issn.1000-3428.0064310 |
|
[2] | BASYONI L, FETAIS N, ERBAD A, et al. Traffic Analysis Attacks on Tor: A Survey[C]// IEEE. 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies(ICIoT). New York: IEEE, 2020: 183-188. |
[3] |
LU Yunan, CAI Manchun, ZHAO Ce, et al. Tor Anonymous Traffic Identification Based on Parallelizing Dilated Convolutional Network[J]. Applied Sciences, 2023; 13(5): 3243.
doi: 10.3390/app13053243 URL |
[4] | TAN Liuyan, RUAN Shuhua, YANG Min, et al. Educational Data Classification Based on Deep Learning[J]. Netinfo Security, 2023, 23(3): 96-102. |
谭柳燕, 阮树骅, 杨敏, 等. 基于深度学习的教育数据分类方法[J]. 信息网络安全, 2023, 23(3):96-102. | |
[5] | MISHRA S. Network Traffic Analysis Using Machine Learning Techniques in IoT Networks[J]. International Journal of Software Innovation, 2022, 9(4): 1-17. |
[6] |
REN Jiyuan, ZHANG Yunhou, WANG Zhe, et al. Artificial Intelligence-Based Network Traffic Analysis and Automatic Optimization Technology[J]. Mathematical Biosciences and Engineering: MBE, 2022, 19(2): 1775-1785.
doi: 10.3934/mbe.2022083 URL |
[7] | JIA Lingyu, LIU Yang, WANG Bailing, et al. A Hierarchical Classification Approach for Tor Anonymous Traffic[C]// IEEE. 2017 IEEE 9th International Conference on Communication Software and Networks(ICCSN). New York: IEEE, 2017: 239-243. |
[8] | LASHKARI A H, GIL G D, MAMUN M, et al. Characterization of Tor Traffic Using Time Based Features[EB/OL]. [2023-10-11]. https://www.researchgate.net/profile/Arash-Habibi-Lashkari/publication/314521450_Characterization_of_Tor_Traffic_using_Time_based_Features/links/59cd942da6fdcce3b34639cc/Characterization-of-Tor-Traffic-using-Time-based-Features.pdf. |
[9] |
RAO Zhihong, NIU Weina, ZHANG Xiaosong, et al. Tor Anonymous Traffic Identification Based on Gravitational Clustering[J]. Peer-to-Peer Networking and Applications, 2018, 11: 592-601.
doi: 10.1007/s12083-017-0566-4 |
[10] |
HE Gaofeng, YANG Ming, LUO Junzhou, et al. Online Identification of Tor Anonymous Communication Traffic[J]. Journal of Software, 2013, 24(3): 540-556.
doi: 10.3724/SP.J.1001.2013.04253 URL |
何高峰, 杨明, 罗军舟, 等. Tor匿名通信流量在线识别方法[J]. 软件学报, 2013, 4(3):540-556. | |
[11] | WEI Songjie, LI Chenghao, SHEN Haotong, et al. Research and Application of Network Anonymous Traffic Detection Method Based on Deep Forest[J]. Netinfo Security, 2022, 22(8): 64-71. |
魏松杰, 李成豪, 沈浩桐, 等. 基于深度森林的网络匿名流量检测方法研究与应用[J]. 信息网络安全, 2022, 22(8):64-71. | |
[12] | WANG Xirui, LU Tianliang, ZHANG Jianling, et al. Tor Anonymous Traffic Identification Method Based on Weighted Stacking Ensemble Learning[J]. Netinfo Security, 2021, 21(12): 118-125. |
王曦锐, 芦天亮, 张建岭, 等. 基于加权Stacking集成学习的Tor匿名流量识别方法[J]. 信息网络安全, 2021, 21(12):118-125. | |
[13] | ZHANG Ling, WEI Chuanzheng, LIN Zhenbiao, et al. A Method for Identifying Tor Hosts Based on Machine Learning Techniques[J]. Application of Electronic Technique, 2021, 47(4): 54-58. |
张玲, 卫传征, 林臻彪, 等. 一种基于机器学习的Tor网络识别探测技术[J]. 电子技术应用, 2021, 47(4):54-58. | |
[14] | PAN Yihan, ZHANG Aixin. Tor Traffic Identification Based on DeepLearning[J]. Communications Technology, 2019, 52(12): 2982-2986. |
潘逸涵, 张爱新. 基于深度学习的Tor流量识别方法[J]. 通信技术, 2019, 52(12):2982-2986. | |
[15] |
VISHNUPRIYA A, SINGH H K, SIVACHAITANYAPRASAD M, et al. RNN-LSTM Based Deep Learning Model for Tor Traffic Classification[J]. Cyber-Physical Systems, 2021, 9: 25-42.
doi: 10.1080/23335777.2021.1924284 URL |
[16] |
AL-NABKI M W, FIDALGO E, ALEGRE E, et al. ToRank: Identifying the Most Influential Suspicious Domains in the Tor Network[J]. Expert Systems with Applications, 2019, 123: 212-226.
doi: 10.1016/j.eswa.2019.01.029 URL |
[17] | LI Xiaohua, WANG Suhang, LI Kai, et al. A Privacy-Preserving Analysis Model of Human-to-Human Transmission of Infectious Diseases[J]. Netinfo Security, 2023, 23(3): 35-44. |
李晓华, 王苏杭, 李凯, 等. 一种支持隐私保护的传染病人际传播分析模型[J]. 信息网络安全, 2023, 23(3):35-44. | |
[18] |
HE Gaofeng, YANG Ming, LUO Junzhou, et al. A Novel Application Classification Attack Against Tor[J]. Concurrency and Computation: Practice and Experience, 2015, 27(18): 5640-5661.
doi: 10.1002/cpe.v27.18 URL |
[19] |
SAMI Z. Tor Traffic Analysis Using Hidden Markov Models[J]. Security and Communication Networks, 2013, 6(9): 1075-1086.
doi: 10.1002/sec.v6.9 URL |
[20] |
CHEN Yijin, SU Ye, ZHANG Mingyue, et al. FedTor: An Anonymous Framework of Federated Learning in Internet of Things[J]. IEEE Internet of Things Journal, 2022, 9: 18620-18631.
doi: 10.1109/JIOT.2022.3162826 URL |
[21] | ABADI M, CHU A, GOODFELLOW I, et al. Deep Learning with Differential Privacy[C]// ACM. The 2016 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2016: 308-318. |
[22] | REZAEI S, LIU Xin. An Efficient Subpopulation-Based Membership Inference Attack[EB/OL]. [2023-10-15]. https://arxiv.org/pdf/2203.02080.pdf. |
[23] | WANG Tengfei. Research on Tor Anonymous Traffic Recognition Technology[D]. Beijing: People’s Public Security University of China, 2022. |
王腾飞. Tor匿名流量识别技术研究[D]. 北京: 中国人民公安大学, 2022. | |
[24] |
LOTFOLLAHI M, ZADE R S H, SIAVOSHANI M J, et al. Deep Packet: A Novel Approach For Encrypted Traffic Classification Using Deep Learning[J]. Soft Computing, 2020, 24(3): 1999-2012.
doi: 10.1007/s00500-019-04030-2 |
[1] | WU Haotian, LI Yifan, CUI Hongyan, DONG Lin. Federated Learning Incentive Scheme Based on Zero-Knowledge Proofs and Blockchain [J]. Netinfo Security, 2024, 24(1): 1-13. |
[2] | XU Ruzhi, DAI Lipeng, XIA Diya, YANG Xin. Research on Centralized Differential Privacy Algorithm for Federated Learning [J]. Netinfo Security, 2024, 24(1): 69-79. |
[3] | LAI Chengzhe, ZHAO Yining, ZHENG Dong. A Privacy Preserving and Verifiable Federated Learning Scheme Based on Homomorphic Encryption [J]. Netinfo Security, 2024, 24(1): 93-105. |
[4] | PENG Hanzhong, ZHANG Zhujun, YAN Liyue, HU Chenglin. Research on Intrusion Detection Mechanism Optimization Based on Federated Learning Aggregation Algorithm under Consortium Chain [J]. Netinfo Security, 2023, 23(8): 76-85. |
[5] | CHEN Jing, PENG Changgen, TAN Weijie, XU Dequan. A Multi-Server Federation Learning Scheme Based on Differential Privacy and Secret Sharing [J]. Netinfo Security, 2023, 23(7): 98-110. |
[6] | LIU Changjie, SHI Runhua. A Smart Grid Intrusion Detection Model for Secure and Efficient Federated Learning [J]. Netinfo Security, 2023, 23(4): 90-101. |
[7] | LIU Jiqiang, WANG Xuewei, LIANG Mengqing, WANG Jian. A Hierarchical Federated Learning Framework Based on Shared Dataset and Gradient Compensation [J]. Netinfo Security, 2023, 23(12): 10-20. |
[8] | JIN Zhigang, LIU Kai, WU Xiaodong. A Review of IDS Research in Smart Grid AMI Field [J]. Netinfo Security, 2023, 23(1): 1-8. |
[9] | LIU Xin, LI Yunyi, WANG Miao. A Lightweight Authentication Protocol Based on Confidential Computing for Federated Learning Nodes [J]. Netinfo Security, 2022, 22(7): 37-45. |
[10] | LYU Guohua, HU Xuexian, YANG Ming, XU Min. Ship AIS Trajectory Classification Algorithm Based on Federated Random Forest [J]. Netinfo Security, 2022, 22(4): 67-76. |
[11] | BAI Hongpeng, DENG Dongxu, XU Guangquan, ZHOU Dexiang. Research on Intrusion Detection Mechanism Based on Federated Learning [J]. Netinfo Security, 2022, 22(1): 46-54. |
[12] | XU Shuo, ZHANG Rui, XIA Hui. Privacy-preserving Strategies for Federated Learning Based on Data Attribute Modification [J]. Netinfo Security, 2022, 22(1): 55-63. |
[13] | LU Honglin, WANG Liming, YANG Jing. A New Parameter Masking Federated Learning Privacy Preserving Scheme [J]. Netinfo Security, 2021, 21(8): 26-34. |
[14] | REN Tao, JIN Ruochen, LUO Yongmei. Network Intrusion Detection Algorithm Integrating Blockchain and Federated Learning [J]. Netinfo Security, 2021, 21(7): 27-34. |
[15] | LU Honglin, WANG Liming. User-oriented Data Privacy Preserving Method for Federated Learning that Supports User Disconnection [J]. Netinfo Security, 2021, 21(3): 64-71. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||