Netinfo Security ›› 2024, Vol. 24 ›› Issue (1): 48-59.doi: 10.3969/j.issn.1671-1122.2024.01.005
Previous Articles Next Articles
XU Ke, LI Jiayi, JIANG Xinghao(), SUN Tanfeng
Received:
2023-06-28
Online:
2024-01-10
Published:
2024-01-24
Contact:
JIANG Xinghao
E-mail:xhjiang@sjtu.edu.cn
CLC Number:
XU Ke, LI Jiayi, JIANG Xinghao, SUN Tanfeng. A Video Gait Privacy Protection Algorithm Based on Sparse Adversarial Attack on Silhouette[J]. Netinfo Security, 2024, 24(1): 48-59.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2024.01.005
目标模型 | 方法 | NM | BG | CL | 加权平均 |
---|---|---|---|---|---|
GaitBase[ | 加权模糊*[ | 91.20% | 86.91% | 70.14% | 86.13% |
运动模糊*[ | 83.95% | 76.15% | 55.49% | 76.70% | |
轮廓拉伸*[ | 88.46% | 83.57% | 66.24% | 83.04% | |
本文方法 | 78.60% | 70.97% | 56.73% | 72.70% | |
GaitSet[ | 加权模糊*[ | 85.95% | 78.78% | 59.75% | 79.28% |
运动模糊*[ | 77.89% | 69.55% | 49.39% | 70.52% | |
轮廓拉伸*[ | 82.55% | 77.73% | 59.24% | 76.92% | |
本文方法 | 75.45% | 68.31% | 53.70% | 69.67% | |
GaitPart[ | 加权模糊*[ | 85.29% | 77.46% | 63.70% | 79.40% |
运动模糊*[ | 80.57% | 70.26% | 54.78% | 73.35% | |
轮廓拉伸*[ | 85.25% | 79.45% | 68.21% | 80.68% | |
本文方法 | 75.04% | 66.85% | 56.30% | 69.65% | |
GaitGL[ | 加权模糊*[ | 90.85% | 87.18% | 73.76% | 86.70% |
运动模糊*[ | 89.00% | 84.25% | 67.39% | 83.72% | |
轮廓拉伸*[ | 88.18% | 85.39% | 72.70% | 84.52% | |
本文方法 | 77.55% | 71.57% | 61.21% | 73.09% |
目标模型 | 方法 | NM |
---|---|---|
GaitBase[ | 加权模糊*[ | 91.96% |
运动模糊*[ | 88.06% | |
轮廓拉伸*[ | 90.98% | |
本文方法 | 78.48% | |
GaitSet[ | 加权模糊*[ | 88.85% |
运动模糊*[ | 87.63% | |
轮廓拉伸*[ | 87.59% | |
本文方法 | 78.40% | |
GaitPart[ | 加权模糊*[ | 88.09% |
运动模糊*[ | 87.33% | |
轮廓拉伸*[ | 89.93% | |
本文方法 | 80.17% | |
GaitGL[ | 加权模糊*[ | 91.51% |
运动模糊*[ | 90.32% | |
轮廓拉伸*[ | 92.04% | |
本文方法 | 81.40% |
[1] |
CHEN Xingyuan, GAO Yuanzhao, TANG Huilin, et al. Research Progress on Big Data Security Technology[J]. SCIENTIA SINICA Informationis, 2020, 50(1): 25-66.
doi: 10.1360/N112019-00077 URL |
陈性元, 高元照, 唐慧林, 等. 大数据安全技术研究进展[J]. 中国科学:信息科学, 2020, 50(1):25-66. | |
[2] |
ALIREZA S M, ALI E. Deep Gait Recognition: A Survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 264-284.
doi: 10.1109/TPAMI.2022.3151865 URL |
[3] | YU Shiqi, TAN Daoliang, TAN Tieniu. A Framework for Evaluating the Effect of View Angle, Clothing and Carrying Condition on Gait Recognition[C]// IEEE. IEEE 18th International Conference on Pattern Recognition. New York: IEEE. 2006: 441-444. |
[4] |
IWAMA H, OKUMURA M, MAKIHARA Y, et al. The OU-ISI Gait Database Comprising the Large Population Dataset and Performance Evaluation of Gait Recognition[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(5): 1511-1521.
doi: 10.1109/TIFS.2012.2204253 URL |
[5] |
TAKEMURA N, MAKIHARA Y, MURAMATSU D, et al. Multi-View Large Population Gait Dataset and Its Performance Evaluation for Cross-View Gait Recognition[J]. IPSJ Transactions on Computer Vision and Applications, 2018, 10(4):1-14.
doi: 10.1186/s41074-017-0037-0 |
[6] | LI Xiang, YASUSHI M, XU Chi, et al. End-to-End Model-Based Gait Recognition Using Synchronized Multi-View Pose Constraint[C]// IEEE. IEEE/CVF International Conference on Computer Vision Workshops. New York: IEEE, 2021: 4089-4098. |
[7] | LI Xiang, YASUSHI M, XU Chi, et al. End-to-End Model-Based Gait Recognition[C]// Springer. Asian Conference on Computer Vision. Heidelberg: Springer, 2020: 3-20. |
[8] |
ANNA S, ANTON K. Pose-Based Deep Gait Recognition[J]. IET Biometrics, 2019, 8(2): 134-143.
doi: 10.1049/iet-bmt.2018.5046 |
[9] | TORBEN T, ALI K, JOHANNES G, et al. Gaitgraph: Graph Convolutional Network for Skeleton-Based Gait Recognition[C]// IEEE. 2021 IEEE International Conference on Image Processing (ICIP). New York: IEEE, 2021: 2314-2318. |
[10] | HOU Saihui, CAO Chunshui, LIU Xu, et al. Gait Lateral Network: Learning Discriminative and Compact Representations for Gait Recognition[C]// Springer. European Conference on Computer Vision. Heidelberg: Springer, 2020: 382-398. |
[11] | LIN Beibei, ZHANG Shunli, BAO Feng. Gait Recognition with Multiple-Temporal-Scale 3D Convolutional Neural Network[J]. ACM.Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 3054-3062. |
[12] | LI Xiang, YASUSHI M, XU Chi, et al. Gait Recognition via Semi-Supervised Disentangled Representation Learning to Identity and Covariate Features[C]// IEEE. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2020: 13306-13316. |
[13] | CHAO Hanqing, HE Yiwei, ZHANG Junping, et al. GaitSet: Regarding Gait as a Set for Cross-View Gait Recognition[C]// ACM. Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence. New York: ACM, 2019: 8126-8133. |
[14] |
ALIREZA S M, ALI E. View-Invariant Gait Recognition with Attentive Recurrent Learning of Partial Representations[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2021, 3(1): 124-137.
doi: 10.1109/TBIOM.8423754 URL |
[15] | ZHANG Ziyuan, LUAN T, LIU Feng, et al. On Learning Disentangled Representations for Gait Recognition[J]. IEEE, 2022, 44(1): 345-360. |
[16] | ZHANG Jianwu, SHEN Wei, WU Zhendong. Recognition of Face Privacy Protection Using Convolutional Neural Networks[J]. Journal of Image and Graphics, 2019, 24(5): 744-752. |
章坚武, 沈炜, 吴震东. 卷积神经网络的人脸隐私保护识别[J]. 中国图象图形学报, 2019, 24(5): 744-752. | |
[17] | SHAWN S, EMILY W, ZHANG Jiayun, et al. Fawkes: Protecting Privacy Against Unauthorized Deep Learning Models[C]// ACM. Proceedings of the 29th USENIX Conference on Security Symposium. New York: ACM, 2020: 1589-1604. |
[18] |
PRACHI A, NARAYANAN P J. Person De-Identification in Videos[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(3): 299 -310.
doi: 10.1109/TCSVT.2011.2105551 URL |
[19] | PARASHAR A, SHEKHAWAT R S. Protection of Gait Data Set for Preserving Its Privacy in Deep Learning Pipeline[J]. IET Biometrics, 2022(11): 557-569. |
[20] | YUKI H, KAZUAKI N, NAOKO N, et al. Anonymization of Human Gait in Video Based on Silhouette Deformation and Texture Transfer[J]. IEEE Transactions on Information Forensics and Security, 2022(17): 3375-3390. |
[21] | NGOC-DUNG T T, HUY H N, HOANG-QUOC, et al. An Approach for Gait Anonymization Using Deep Learning[C]// IEEE. 2017 IEEE Workshop on Information Forensics and Security (WIFS). New York: IEEE, 2017: 1-6. |
[22] | NGOC-DUNG T T, HUY H N, FANG Fuming, et al. An RGB Gait Anonymization Model for Low-Quality Silhouettes[C]// IEEE. 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). New York: IEEE, 2019: 1686-1693. |
[23] | NGOC-DUNG T T, JUNICHI Y, ISAO E. Color Transfer to Anonymized Gait Images While Maintaining Anonymization[C]// IEEE. 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). New York: IEEE, 2020: 1406-1413. |
[24] | NGOC-DUNG T T, HUY H N, HOANG-QUOC N, et al. Spatio-Temporal Generative Adversarial Network for Gait Anonymization[J]. Journal of Information Security and Applications, 2019(46): 307-319. |
[25] | YUKI H, KAZUAKI N, NAOKO N, et al. Anonymization of Gait Silhouette Video by Perturbing Its Phase and Shape Components[C]// IEEE. 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). New York: IEEE, 2019: 1679-1685. |
[26] | JIANG Xinghao, ZHAO Zeyu, XU Ke. Adversarial Attack Technology for Vision-Based Aircraft Intelligent Object Detection[J]. Air & Space Defense, 2021, 4(1): 8-13. |
蒋兴浩, 赵泽宇, 许可. 基于视觉的飞行器智能目标检测对抗攻击技术[J]. 空天防御, 2021, 4(1): 8-13. | |
[27] | CHRISTIAN S, WOJCIECH Z, ILYA S, et al. Intriguing Properties of Neural Networks[EB/OL]. (2013-12-21) [2023-07-01]. https://arxiv.org/abs/1312.6199. |
[28] | IAN J G, JONATHON S, CHRISTIAN S. Explaining and Harnessing Adversarial Examples[EB/OL]. (2014-12-20) [2023-07-01]. https://arxiv.org/abs/1412.6572. |
[29] | ALEKSANDER M, ALEKSANDAR M, LUDWIG S, et al. Towards Deep Learning Models Resistant to Adversarial Attacks[EB/OL]. (2017-06-19) [2023-07-01]. https://arxiv.org/abs/1706.06083. |
[30] | FAN Chao, LIANG Junhao, SHEN Chuanfu, et al. OpenGait: Revisiting Gait Recognition Toward Better Practicality[EB/OL]. (2022-11-12) [2023-07-01]. https://arxiv.org/abs/2211.06597. |
[31] | FAN Chao, PENG Yunjie, CAO Chunshui, et al. GaitPart: Temporal Part-Based Model for Gait Recognition[C]// IEEE. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2020: 14213-14221. |
[32] | LIN Beibei, ZHANG Shunli, YU Xin, et al. Gait Recognition via Effective Global-Local Feature Representation and Local Temporal Aggregation[C]// IEEE. 2021 IEEE/CVF International Conference on Computer Vision (ICCV). New York: IEEE, 2021: 14648-14656. |
[1] | JIANG Zenghui, ZENG Weijun, CHEN Pu, WU Shitao. Review of Adversarial Samples for Modulation Recognition [J]. Netinfo Security, 2023, 23(6): 74-90. |
[2] | TONG Xin, WANG Luona, WANG Runzheng, WANG Jingya. A Generation Method of Word-level Adversarial Samples for Chinese Text Classification [J]. Netinfo Security, 2020, 20(9): 12-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||