Netinfo Security ›› 2023, Vol. 23 ›› Issue (8): 76-85.doi: 10.3969/j.issn.1671-1122.2023.08.007
Previous Articles Next Articles
PENG Hanzhong1,2, ZHANG Zhujun1,2(), YAN Liyue3, HU Chenglin3
Received:
2023-04-18
Online:
2023-08-10
Published:
2023-08-08
Contact:
ZHANG Zhujun
E-mail:zhangzhujun@iie.ac.cn
CLC Number:
PENG Hanzhong, ZHANG Zhujun, YAN Liyue, HU Chenglin. Research on Intrusion Detection Mechanism Optimization Based on Federated Learning Aggregation Algorithm under Consortium Chain[J]. Netinfo Security, 2023, 23(8): 76-85.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2023.08.007
[1] |
APRUZZESE G, PAJOLA L, CONTI M. The Cross-Evaluation of Machine Learning-Based Network Intrusion Detection Systems[J]. IEEE Transactions on Network and Service Management, 2022, 19(4): 5152-5169.
doi: 10.1109/TNSM.2022.3157344 URL |
[2] | ZHANG Chunying, JIA Donghao, WANG Liya, et al. Comparative Research on Network Intrusion Detection Methods Based on Machine Learning[EB/OL]. (2022-10-15)[2023-04-05]. https://doi.org/10.1016/j.cose.2022.102861. |
[3] |
TSAI C, HSU Y, LIN C, et al. Intrusion Detection by Machine Learning: A Review[J]. Expert Systems with Applications, 2009, 36(10): 11994-12000.
doi: 10.1016/j.eswa.2009.05.029 URL |
[4] |
WANG Ziyue, PENG Yanjun, LI Dapeng, et al. Mmnet: A Multi-Scale Deep Learning Network for the Left Ventricular Segmentation of Cardiac Mri Images[J]. Applied Intelligence, 2022, 52(5): 5225-5240.
doi: 10.1007/s10489-021-02720-9 |
[5] | VASILOMANOLAKIS E, KARUPPAYAH S, MÜHLHÄUSER M, et al. Taxonomy and Survey of Collaborative Intrusion Detection[J]. ACM Computing Surveys (CSUR), 2015, 47(4): 1-33. |
[6] |
GONG Maoguo, XIE Yu, PAN Ke, et al. A Survey on Differentially Private Machine Learning[J]. IEEE Computational Intelligence Magazine, 2020, 15(2): 49-64.
doi: 10.1109/MCI.10207 URL |
[7] | ZHANG Chen, XIE Yu, BAI Hang, et al. A Survey on Federated Learning[EB/OL]. (2022-10-15)[2023-04-05]. https://doi.org/10.1016/j.knosys.2021.106775. |
[8] |
MOTHUKURI V, KHARE P, PARIZI R M, et al. Federated-Learning-Based Anomaly Detection for IoT Security Attacks[J]. IEEE Internet of Things Journal, 2021, 9(4): 2545-2554.
doi: 10.1109/JIOT.2021.3077803 URL |
[9] | MA Chuan, LI Jun, DING Ming, et al. On Safeguarding Privacy and Security in the Framework of Federated Learning[J]. IEEE Network, 2020, 34(4): 242-248. |
[10] |
MOTHUKURI V, PARIZI R M, POURIYEH S, et al. A Survey on Security and Privacy of Federated Learning[J]. Future Generation Computer Systems, 2021, 115: 619-640.
doi: 10.1016/j.future.2020.10.007 URL |
[11] | LI Tian, SAHU A K, TALWALKAR A, et al. Federated Learning: Challenges, Methods, and Future Directions[J]. IEEE Signal Processing Magazine, 2020, 37(3): 50-60. |
[12] |
ZHENG Zibin, XIE Shaoan, DAI Hongning, et al. Blockchain Challenges and Opportunities: A Survey[J]. International Journal of Web and Grid Services, 2018, 14(4): 352-375.
doi: 10.1504/IJWGS.2018.095647 URL |
[13] | DIB O, BROUSMICHE K L, DURAND A, et al. Consortium Blockchains: Overview, Applications and Challenges[J]. International Journal on Advances in Telecommunications, 2018, 11: 51-64. |
[14] |
ZHANG Weishan, LU Qinghua, YU Qiuyu, et al. Blockchain-Based Federated Learning for Device Failure Detection in Industrial IoT[J]. IEEE Internet of Things Journal, 2020, 8(7): 5926-5937.
doi: 10.1109/JIOT.2020.3032544 URL |
[15] | ZAABAR B, CHEIKHROUHOU O, ABID M. Intrusion Detection System for IoMT through Blockchain-Based Federated Learning[C]//IEEE.2022 15th International Conference on Security of Information and Networks (SIN). New York: IEEE, 2022: 1-8. |
[16] |
LIU Hong, ZHANG Shuaipeng, ZHANG Pengfei, et al. Blockchain and Federated Learning for Collaborative Intrusion Detection in Vehicular Edge Computing[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 6073-6084.
doi: 10.1109/TVT.2021.3076780 URL |
[17] | SARHAN M, LO W W, LAYEGHY S, et al. HBFL: A Hierarchical Blockchain-Based Federated Learning Framework for Collaborative IoT Intrusion Detection[EB/OL]. (2022-04-08)[2023-04-05]. https://doi.org/10.48550/arXiv.2204.04254. |
[18] | ZHOU Wei, WANG Chao, XU Jian, et al. Decentralized Federated Learning Model for Privacy Protection Based on Blockchain[J]. Journal of Computer Research and Development, 2022, 59(11): 2423-2436. |
周炜, 王超, 徐剑, 等. 基于区块链的隐私保护去中心化联邦学习模型[J]. 计算机研究与发展, 2022, 59(11): 2423-2436. | |
[19] |
TAN Rongjie, HONG Zhiyong, YU Wenhua, et al. Decentralized Federated Learning Strategy with Non-Independent Uniformly Distributed Data[J]. Computer Engineering and Applications, 2023, 59(1): 269-277.
doi: 10.3778/j.issn.1002-8331.2204-0165 |
谭荣杰, 洪智勇, 余文华, 等. 非独立同分布数据下的去中心化联邦学习策略[J]. 计算机工程与应用, 2023, 59(1): 269-277.
doi: 10.3778/j.issn.1002-8331.2204-0165 |
|
[20] |
WANG Shiqiang, TUOR T, SALONIDIS T, et al. Adaptive Federated Learning in Resource Constrained Edge Computing Systems[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(6): 1205-1221.
doi: 10.1109/JSAC.2019.2904348 |
[21] | LUO Bing, LI Xiang, WANG Shiqiang, et al. Cost-Effective Federated Learning Design[C]//IEEE.IEEE INFOCOM 2021-IEEE Conference on Computer Communications. New York: IEEE, 2021: 1-10. |
[22] |
LIN F P C, HOSSEINALIPOUR S, AZAM S S, et al. Semi-Decentralized Federated Learning with Cooperative D2D Local Model Aggregations[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(12): 3851-3869.
doi: 10.1109/JSAC.2021.3118344 URL |
[23] |
CHENG Jieren, LUO Ping, XIONG Naixue, et al. AAFL: Asynchronous-Adaptive Federated Learning in Edge-Based Wireless Communication Systems for Countering Communicable Infectious Diseasess[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(11): 3172-3190.
doi: 10.1109/JSAC.2022.3211564 URL |
[24] |
LIU Lumin, ZHANG Jun, SONG Shenghui, et al. Hierarchical Federated Learning with Quantization: Convergence Analysis and System Design[J]. IEEE Transactions on Wireless Communications, 2023, 22(1): 2-18.
doi: 10.1109/TWC.2022.3190512 URL |
[25] | WU Jiagao, WANG Yu, SHEN Zhangchi, et al. Adaptive Client and Communication Optimizations in Federated Learning[EB/OL]. (2023-04-08)[2023-04-15]. https://doi.org/10.1016/j.is.2023.102226. |
[26] | TANG Lun, WANG Zhiping, PU Hao, et al. Research on Efficient Federated Learning Communication Mechanism Based on Adaptive Gradient Compression[J]. Journal of Electronics and Information Technology, 2023, 45(1): 227-234. |
唐伦, 汪智平, 蒲昊, 等. 基于自适应梯度压缩的高效联邦学习通信机制研究[J]. 电子与信息学报, 2023, 45(1): 227-234. | |
[27] | GONG Maoguo, GAO Yuan, WANG Jiongqian, et al. Adaptive Federated Learning Algorithm Based on Evolutionary Strategy[J]. Scientia Sinica (Informationis), 2023, 53(3): 437-453. |
公茂果, 高原, 王炯乾, 等. 基于进化策略的自适应联邦学习算法[J]. 中国科学:信息科学, 2023, 53(3): 437-453. | |
[28] | WENG Jiasi, WENG Jian, ZHANG Jilian, et al. Deepchain: Auditable and Privacy-Preserving Deep Learning with Blockchain-Based Incentive[J]. IEEE Transactions on Dependable and Secure Computing, 2021, 18(5): 2438-2455. |
[29] |
LIU Wei, CHEN Li, CHEN Yunfei, et al. Accelerating Federated Learning via Momentum Gradient Descent. IEEE Transactions on Parallel and Distributed Systems, 2020, 31(8): 1754-1766.
doi: 10.1109/TPDS.71 URL |
[30] |
PHONG L T, AONO Y, HAYASHI T, et al. Privacy-Preserving Deep Learning via Additively Homomorphic Encryption. IEEE Transactions on Information Forensics and Security, 2018, 13(5): 1333-1345.
doi: 10.1109/TIFS.2017.2787987 URL |
[1] | YU Huifang, QIAO Yifan, MENG Ru. Attribute-Based Anti-Quantum Threshold Ring Signcryption Scheme for Blockchain-Based Finance [J]. Netinfo Security, 2023, 23(7): 44-52. |
[2] | CHEN Jing, PENG Changgen, TAN Weijie, XU Dequan. A Multi-Server Federation Learning Scheme Based on Differential Privacy and Secret Sharing [J]. Netinfo Security, 2023, 23(7): 98-110. |
[3] | LIU Changjie, SHI Runhua. A Smart Grid Intrusion Detection Model for Secure and Efficient Federated Learning [J]. Netinfo Security, 2023, 23(4): 90-101. |
[4] | ZHANG Xuewang, ZHANG Hao, YAO Yaning, FU Jiali. Privacy Protection Scheme of Consortium Blockchain Based on Group Signature and Homomorphic Encryption [J]. Netinfo Security, 2023, 23(3): 56-61. |
[5] | JIN Zhigang, LIU Kai, WU Xiaodong. A Review of IDS Research in Smart Grid AMI Field [J]. Netinfo Security, 2023, 23(1): 1-8. |
[6] | LIU Xin, LI Yunyi, WANG Miao. A Lightweight Authentication Protocol Based on Confidential Computing for Federated Learning Nodes [J]. Netinfo Security, 2022, 22(7): 37-45. |
[7] | LYU Guohua, HU Xuexian, YANG Ming, XU Min. Ship AIS Trajectory Classification Algorithm Based on Federated Random Forest [J]. Netinfo Security, 2022, 22(4): 67-76. |
[8] | CHEN Binjie, WEI Fushan, GU Chunxiang. Blockchain Abnormal Transaction Detection with Privacy-preserving Based on KNN [J]. Netinfo Security, 2022, 22(3): 78-84. |
[9] | ZHANG Xuewang, YAO Yaning, LI Zhihong, ZHANG Hao. Data Sharing Scheme Based on Consortium Blockchain and Asmuth-Bloom Secret Sharing Algorithm [J]. Netinfo Security, 2022, 22(11): 17-23. |
[10] | BAI Hongpeng, DENG Dongxu, XU Guangquan, ZHOU Dexiang. Research on Intrusion Detection Mechanism Based on Federated Learning [J]. Netinfo Security, 2022, 22(1): 46-54. |
[11] | XU Shuo, ZHANG Rui, XIA Hui. Privacy-preserving Strategies for Federated Learning Based on Data Attribute Modification [J]. Netinfo Security, 2022, 22(1): 55-63. |
[12] | LU Honglin, WANG Liming, YANG Jing. A New Parameter Masking Federated Learning Privacy Preserving Scheme [J]. Netinfo Security, 2021, 21(8): 26-34. |
[13] | REN Tao, JIN Ruochen, LUO Yongmei. Network Intrusion Detection Algorithm Integrating Blockchain and Federated Learning [J]. Netinfo Security, 2021, 21(7): 27-34. |
[14] | LU Honglin, WANG Liming. User-oriented Data Privacy Preserving Method for Federated Learning that Supports User Disconnection [J]. Netinfo Security, 2021, 21(3): 64-71. |
[15] | JIANG Nan, CUI Yaohui, WANG Jian, WU Jinchao. Context-based Attack Scenario Reconstruction Model for IDS Alarms [J]. Netinfo Security, 2020, 20(7): 1-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||