Netinfo Security ›› 2024, Vol. 24 ›› Issue (1): 69-79.doi: 10.3969/j.issn.1671-1122.2024.01.007
Previous Articles Next Articles
XU Ruzhi, DAI Lipeng(), XIA Diya, YANG Xin
Received:
2023-08-20
Online:
2024-01-10
Published:
2024-01-24
Contact:
DAI Lipeng
E-mail:dlpdaniel1234@163.com
CLC Number:
XU Ruzhi, DAI Lipeng, XIA Diya, YANG Xin. Research on Centralized Differential Privacy Algorithm for Federated Learning[J]. Netinfo Security, 2024, 24(1): 69-79.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2024.01.007
[1] | MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-Efficient Learning of Deep Networks from Decentralized Data[C]// PMLR.Artificial Intelligence and Statistics. Lauderdale: PMLR, 2017: 1273-1282. |
[2] | ZHOU Jun, FANG Guoying, WU Nan. A Survey of Research on Security and Privacy Protection in Federated Learning[J]. Journal of Xihua University(Natural Science Edition), 2020, 39(4): 9-17. |
周俊, 方国英, 吴楠. 联邦学习安全与隐私保护研究综述[J]. 西华大学学报(自然科学版), 2020, 39(4): 9-17. | |
[3] | GEYER R C, KLEIN T, NABI M. Differentially Private Federated Learning: A Client Level Perspective[EB/OL]. (2017-09-20) [2023-07-23]. https://arxiv.org/abs/1712.07557. |
[4] | MCMAHAN H B, RAMAGE D, TALWAR K, et al. Learning Differentially Private Recurrent Language Models[EB/OL]. (2017-08-18) [2023-07-24]. https://arxiv.org/abs/1710.06963. |
[5] | MCMAHAN H B, ANDREW G, ERLINGSSON U, et al. A General Approach to Adding Differential Privacy to Iterative Training Procedures[EB/OL].(2018-09-15) [2023-07-24]. https://arxiv.org/abs/1812.06210. |
[6] | LIU Yuhan, SURESH A T, YU F, et al. Learning Discrete Distributions: User vs Item-Level Privacy[C]// NIPS. Advances in Neural Information Processing Systems. New York: MIT Press, 2020: 20965-20976. |
[7] | LIANG Zhicong, WANG Bao, GU Quanquan, et al. Exploring Private Federated Learning with Laplacian Smoothing[EB/OL]. (2020-05-01) [2023-07-24]. https://arxiv.org/abs/2005.00218. |
[8] | HAMM J, CAO P, BELKIN M. Learning Privately from Multiparty Data[C]// ACM. International Conference on Machine Learning. New York: ACM, 2016: 555-563. |
[9] | PAPERNOT N, ABADI M, ERLINGSSON U, et al. Semi-Supervised Knowledge Transfer for Deep Learning from Private Training Data[C]// ICLR. International Conference on Learning Representations. New York: arXiv.org, 2016: 1-16. |
[10] | PAPERNOT N, SONG Shuang, MIRONOV I, et al. Scalable Private Learning with PATE[C]// ICLR. International Conference on Learning Representations. New York: arXiv.org, 2018: 1-34. |
[11] | MIRONOV I. Renyi Differential Privacy[C]// IEEE. 2017 IEEE 30th Computer Security Foundations Symposium (CSF). New York: IEEE, 2017: 263-275. |
[12] | SUN Lichao, ZHOU Yingbo, YU P S, et al. Differentially Private Deep Learning with Smooth Sensitivity[EB/OL]. (2020-03-01) [2023-07-25]. https://arxiv.org/abs/2003.00505. |
[13] | ABADI M, CHU A, GOODFELLOW I, et al. Deep Learning with Differential Privacy[C]// ACM. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2016: 308-318. |
[14] | DING Jiahao, WANG Jingyi, LIANG Guanguan, et al. Towards Plausible Differentially Private ADMM Based Distributed Machine Learning[C]// ACM.Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 285-294. |
[15] |
ARACHCHIGE P C M, BERTOK P, KHALIL I, et al. Local Differential Privacy for Deep Learning[J]. IEEE Internet of Things Journal, 2019, 7(7): 5827-5842.
doi: 10.1109/JIoT.6488907 URL |
[16] |
ZHAO Yang, ZHAO Jun, YANG Mengmeng, et al. Local Differential Privacy-Based Federated Learning for Internet of Things[J]. IEEE Internet of Things Journal, 2020, 8(11): 8836-8853.
doi: 10.1109/JIOT.2020.3037194 URL |
[17] | TRUEX S, LIU Ling, CHOW K H, et al. LDP-Fed: Federated Learning with Local Differential Privacy[C]// ACM. Proceedings of the Third ACM International Workshop on Edge Systems, Analytics and Networking. New York: ACM, 2020: 61-66. |
[18] | KIM M, LEE J, OHNO-MACHADO L, et al. Secure and Differentially Private Logistic Regression for Horizontally Distributed Data[J]. IEEE Transactions on Information Forensics and Security, 2019(15): 695-710. |
[19] |
LU Yunlong, HUANG Xiahong, DAI Yueyue, et al. Differentially Private Asynchronous Federated Learning for Mobile Edge Computing in Urban Informatics[J]. IEEE Transactions on Industrial Informatics, 2019, 16(3): 2134-2143.
doi: 10.1109/TII.9424 URL |
[20] |
ZHAO Bin, FAN Kai, YANG Kan, et al. Anonymous and Privacy-Preserving Federated Learning with Industrial Big Data[J]. IEEE Transactions on Industrial Informatics, 2021, 17(9): 6314-6323.
doi: 10.1109/TII.2021.3052183 URL |
[21] | HU Rui, GUO Yuanxiong, GONG Yanming. Concentrated Differentially Private and Utility Preserving Federated Learning[EB/OL]. (2020-09-22) [2023-07-23]. https://arxiv.org/abs/2003.13761. |
[22] |
GONG Maoguo, FENG Jialun, YU Xie. Privacy-Enhanced Multi-Party Deep Learning[J]. Neural Networks, 2020, 121: 484-496.
doi: S0893-6080(19)30323-5 pmid: 31648120 |
[23] | CHOUDHURY O, GKOULALAS-DIVANIS A, SALONIDIS T, et al. Anonymizing Data for Privacy-Preserving Federated Learning[EB/OL]. (2020-02-21) [2023-07-24]. https://arxiv.org/abs/2002.09096. |
[24] | POULIS G, LOUKIDES G, GKOULALAS-DIVANIS A, et al. Anonymizing Data with Relational and Transaction Attributes[C]// Springer. Proceedings of the 2013 European Conference on Machine Learning and Knowledge Discovery in Databases-Volume Part III. Heidelberg: Springer, 2013: 353-369. |
[25] | BITTAU A, ERLINGSSON U, MANIATIS P, et al. Prochlo: Strong Privacy for Analytics in the Crowd[C]// ACM. Proceedings of the 26th Symposium on Operating Systems Principles. New York: ACM, 2017: 441-459. |
[26] | ERLINGSSON U, FELDMAN V, MIRONOV I, et al. Encode,Shuffle, Analyze Privacy Revisited: Formalizations and Empirical Evaluation[EB/OL].(2020-01-10) [2023-07-25]. https://arxiv.org/abs/2001.03618. |
[27] | WEI Kang, LI Jun, DING Ming, et al. Federated Learning with Differential Privacy: Algorithms and Performance Analysis[J]. IEEE Transactions on Information Forensics and Security, 2020(15): 3454-3469. |
[28] | WANG Hongyi, YUROCHKIN M, SUN Yuekai, et al. Federated Learning with Matched Averaging[EB/OL]. (2020-02-15) [2023-07-23]. https://arxiv.org/abs/2002.06440. |
[29] | YE Yunfan, LI Shen, LIU Fang, et al. EdgeFed: Optimized Federated Learning Based on Edge Computing[J]. IEEE Access, 2020(8): 209191-209198. |
[30] | YUAN Honglin, MA Tengyu. Federated Accelerated Stochastic Gradient Descent[C]// NIPS. Advances in Neural Information Processing Systems. San Diego: NIPS, 2020(33): 5332-5344. |
[31] | DEKEL O, GILAD-BACHRACH R, SHAMIR O, et al. Optimal Distributed Online Prediction Using Mini-Batches[J]. Journal of Machine Learning Research, 2012, 13(1): 1-38. |
[32] | COTTER A, SHAMIR O, SREBRO N, et al. Better Mini-Batch Algorithms via Accelerated Gradient Methods[C]// NIPS. Advances in Neural Information Processing Systems. San Diego: NIPS, 2011: 24-33. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||