[1] |
HE K M, ZHANG X Y, REN S Q, et al. Deep Residual Learning for Image Recognition[C]//IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition, June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 2016: 770-778.
|
[2] |
GEOFFREY H, LI Deng, DONG Yu, et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups[J]. IEEE Signal Processing Magazine, 2012, 29(6):82-97.
|
[3] |
YING R, HE R, CHEN K, et al. Graph Convolutional Neural Networks for Web-scale Recommender Systems[C]//ACM. 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 19-23, 2018, London, UK. New York: ACM, 2018: 974-983.
|
[4] |
KIPF T N, WELLING M. Semi-supervised Classification with Graph Convolutional Networks[C]//IEEE. 5th International Conference on Learning Representations, April 24-26, 2017, Toulon, France. New York: IEEE, 2017: 1-14.
|
[5] |
XU Bingbing, CEN Keting, HUANG Junjie, et al. Survey of Graph Convolution Neural Networks[J]. Chinese Journal of Computers, 2020, 43(5):755-780.
|
|
徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5):755-780.
|
[6] |
KASIVISWANATHAN S P, LEE H K, NISSIM K, et al. What Can We Learn Privately?[J]. SIAM Journal on Computing, 2011, 40(3):793-826.
doi: 10.1137/090756090
URL
|
[7] |
MIRONOV I. Rényi Differential Privacy[C]//IEEE. 30th IEEE Computer Security Foundations Symposium, August 21-25, 2017, Santa Barbara, CA, USA. New York: IEEE, 2017: 263-275.
|
[8] |
LI Q B, WU Z M, WEN Z Y, et al. Privacy-preserving Gradient Boosting Decision Trees[C]//AAAI. 34th AAAI Conference on Artificial Intelligence, February 7-12, 2020, New York, NY, USA. Palo Alto: AAAI, 2020: 784-791.
|
[9] |
REUBEN J. Towards a Differential Privacy Theory for Edge-labeled Directed Graphs[EB/OL]. https://gi.de/ueber-uns/historie, 2020-07-19.
|
[10] |
XIAO Biao, YAN Hongqiang, LUO Haining, et al. Research on Improvement of Bayesian Network Privacy Protection Algorithm Based on Differential Privacy[J]. Netinfo Security, 2020, 20(11):75-86.
|
|
肖彪, 闫宏强, 罗海宁, 等. 基于差分隐私的贝叶斯网络隐私保护算法的改进研究[J]. 信息网络安全, 2020, 20(11):75-86.
|
[11] |
PINOT R, MORVAN A, YGER F, et al. Graph-based Clustering under Differential Privacy[EB/OL]. https://xueshu.baidu.com/usercenter/paper/show?paperid=52f1b38f2a9d4bab19fd71507a63b14e&site=xueshu_se, 2020-06-15.
|
[12] |
YIN Yiping, LIAO Qing, LIU Yang, et al. Structural-based Graph Publishing Under Differential Privacy[C]//IEEE. 8th IEEE International Conference on Communications, August 11-13, 2019, Changchun, China. New York: IEEE, 2019: 67-78.
|
[13] |
GAO Tianchong, LI Feng. Protecting Social Network with Differential Privacy Under Novel Graph Model[J]. IEEE Access, 2020, 20(8):276-289.
|
[14] |
SEALFON A, ULLMAN J. Efficiently Estimating Erdos-Rényi Graphs with Node Differential Privacy[C]//MIT. 32nd Advances in Neural Information Processing Systems, December 8-14, 2019, Vancouver, BC, Canada. New York: ACM, 2019: 3765-3775.
|
[15] |
MCKENNA R, SHELDON D, MIKLAU G. Graphical-model Based Estimation and Inference for Differential Privacy[C]//PMLR. 36th International Conference on Machine Learning, June 9-15, 2019, Long Beach, California, USA. New York: ACM, 2019: 4435-4444.
|
[16] |
ZHU Hong, ZUO Xin, XIE Meiyi. DP-FT: A Differential Privacy Graph Generation with Field Theory for Social Network Data Release[J]. IEEE Access, 2019, 19(7):304-319.
|
[17] |
ZHU Ligeng, LIU Zhijian, HAN Song. Deep Leakage from Gradients[C]//MIT. 32nd Advances in Neural Information Processing Systems, December 8-14, 2019, Vancouver, BC, Canada. New York: ACM, 2019: 14747-14756.
|