Netinfo Security ›› 2024, Vol. 24 ›› Issue (12): 1831-1844.doi: 10.3969/j.issn.1671-1122.2024.12.003
Previous Articles Next Articles
HE Zeping1, XU Jian1,2(), DAI Hua1,2, YANG Geng1,2
Received:
2024-08-30
Online:
2024-12-10
Published:
2025-01-10
CLC Number:
HE Zeping, XU Jian, DAI Hua, YANG Geng. A Review of Federated Learning Application Technologies[J]. Netinfo Security, 2024, 24(12): 1831-1844.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2024.12.003
工作 | 应用场景 | 数据集 | 优点 | 性能 指标 |
---|---|---|---|---|
AMCNN-LSTM[ | 工业物联网中的时间 序列数据 | Four real-world data sets, power demand, space shuttle, ECG, engine | 通信效率高 | 准确率 |
FedAnomaly[ | 网络物理 系统中的高维多元时间序列数据 | SMAP, MSL, SWaT | 连续异常段检测和检测延迟低 | 准确率 |
FL-IIOT[ | 工业控制 系统 | SCADA | 计算速度快 | 准确率、精确度 |
FL-LSTM[ | 网络系统 | SEA | 提供更丰富的 语义信息 | 准确率、精确度 |
FL-KMC[ | 工业传感器 | pump sensor dataset taken from 53 sensors | 收敛速度快 | 准确率、精确度 |
FedAGRU[ | 无线边缘 网络 | KDDCUP 99, CICIDS2017 | 强鲁棒性,降低通信成本 | 准确率、精确度 |
FL-AD[ | 物联网 | Modbus | 攻击检测的准确率更高且误报率更小 | 准确率、精确度 |
工作 | 应用场景 | 数据集 | 优点 | 性能指标 |
---|---|---|---|---|
FL-MGVN[ | 工业控制系统中的异常检测 | MNIST, Fashion-MNIST | 更高的识别性能和分类精度 | AUC分数 |
FATRAF[ | 工业控制系统中的时间序列数据 | Gas Pipeline, SWaT, HAI, Power Demand | 动态跟踪新异常模式 | 准确率、精确度 |
FL-AD[ | 本地数据交换受到限制且 存在异构性的移动环境 | MNIST, Fashion-MNIST | 适用于本地数据交换 受限且存在异构性的 移动环境 | AUC分数 |
DAEF[ | 边缘计算 | Covertype, Credit card, Shuttle | 计算速度快,通信成本低 | 准确率、精确度 |
Fed-ANIDS[ | 分布式网络 入侵检测系统 | USTC-TFC2016, CIC-IDS2017 | 优于其他 基于生成对抗网络的模型 | 准确率、精确度 |
工作 | 应用场景 | 数据集 | 优点 | 性能指标 |
---|---|---|---|---|
MT-DNN-FL[ | 网络异常 检测 | CICIDS2017, ISCXVPN2016, ISCXTor2016 | 减少训练时间开销 | 精确度、召回率和准确率 |
FL-FFDF[ | 人脸伪造 视频检测 | FaceForensics++, Celeb-DeepFake v2 | 高安全性和 隐私保障、强鲁棒性 | 准确率、AUC |
FLAD[ | 工业物联网异常检测 | smart terminals | 高吞吐量、低延迟和高异常检测精度 | 准确率、 精确度 |
HFL[ | 网络异常 检测 | UNSW-NB15 | 降低通信成本,泛化性强 | 准确率 |
FL-finder[ | 未知网络 异常检测 | KDD CUP 99, UNSW-NB 15 | 实时上报新的异常,能够 缓存检测到的 未知异常 | 准确率和F1分数 |
FL-SMAD[ | 智能电网 | KDD, NSL-KDD, CIDDS | 降低通信成本 | 精确度、召回率和准确率 |
FDRL-IDS[ | 入侵检测 系统 | ISOT-CID, NSL-KDD | 可扩展性和 鲁棒性 | 准确率、精确度、假阳性率 |
工作 | 数据集 | 优点 |
---|---|---|
FL-GNN[ | MovieLens11, Flixster, Douban, YahooMusic | 应用差分隐私技术 |
PerFedRec[ | MovieLens-100K, Yelp, Amazon-Kindle | 降低通信成本 |
FeSoG[ | Ciao, Epinions, Filmtrust | 采用局部GNN的关系处理、本地用户嵌入推理和伪标签 技术来应对异构性、个性化和隐私保护挑战 |
FedRule[ | smart home devices from the Wyze Labs’1 rule engine | 采用方差减少机制解决了Non-IID数据分布问题 |
FL-GMT[ | Ciao, Epinions | 采用损失注意力的动态更新方法来提高聚合结束时的系统稳定性 |
FGC[ | MovieLens 100K, MovieLens 1M | 通过模型聚合来抵抗投毒攻击 |
GCAFM[ | Douban, FilmTrust | 通过因子分解机模型进行特征交叉 |
工作 | 数据集 | 优点 |
---|---|---|
MVMF[ | MovieLens-1M, BookCrossings | 解决冷启动问题和提升推荐 质量 |
PrivMVMF[ | MovieLens-1M | 引入同态加密和随机响应技术 保护隐私 |
FL-UserRes[ | Filmtrust, Movielens-100k | 引入同态加密和随机响应技术保护隐私 |
FMFParking[ | the real ETC parking lot data in Zhengzhou City, Henan Province, China | 引入加密技术保护隐私 |
MetaMF[ | Douban, Hetrec-movielens, Movielens1M, Ciao | 计算简单 |
FPL[ | Foursquare | 用户可以控制泄露的敏感数据的数量 |
FL-FairRes[ | MovieLens-1M1, Amazon-Movies2 | 引入差分隐私技术保护隐私,降低通信开销 |
LightFR[ | MovieLens-1M, Filmtrust, Douban-Movie, Ciao | 速度快、鲁棒性强 |
工作 | 数据集 | 优点 |
---|---|---|
FL-SSL[ | Libri-Light | 泛化性强 |
FCIL-RNN[ | voice-assistant dataset | 减轻灾难性的遗忘 |
FL-ETE[ | LibriSpeech | 揭示了在复杂、高度可变的时间序列数据上应用联邦学习时存在的问题 |
FL-SPM[ | LibriSpeech | 抵消差分隐私噪声的不利影响 |
FL-EtEASR[ | LibriSpeech encompassing domains | 总结了各种注意事项 |
FL-OnD[ | of search, farfield, telephony, YouTube, etc | 提高对用户纠正和罕见例子的 学习能力 |
FL-PSIDR[ | CPHPDs | 隐私保护性高 |
[1] | WARNAT-HERRESTHAL S, SCHULTZE H, SHASTRY K L, et al. Swarm Learning for Decentralized and Confidential Clinical Machine Learning[J]. Nature, 2021, 594(7862): 265-270. |
[2] | ALESSANDRO A, LAURA B, JEFF H. How Privacy’s Past May Shape its Future[J]. Science, 2022, 375(6578): 270-272. |
[3] | NASR M, SHOKRI R, HOUMANSADR A. Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-Box Inference Attacks against Centralized and Federated Learning[C]// IEEE. 2019 IEEE Symposium on Security and Privacy (SP). New York: IEEE, 2019: 739-753. |
[4] | YANG Qiang, LIU Yang, CHEN Tianjian, et al. Federated Machine Learning: Concept and Applications[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2019, 10(2): 1-19. |
[5] |
ESHETE B. Making Machine Learning Trustworthy[J]. Science, 2021, 373(6556): 743-744.
doi: 10.1126/science.abi5052 pmid: 34385384 |
[6] | TAN Zuowen, ZHANG Lianfu. A Review of Research on Privacy Protection of Machine Learning[J]. Software Journal, 2020, 31(7): 2127-2156. |
谭作文, 张连福. 机器学习隐私保护研究综述[J]. 软件学报, 2020, 31(7): 2127-2156. | |
[7] | LIU Junxu, MENG Xiaofeng. Survey on Privacy-Preserving Machine Learning[J]. Journal of Computer Research and Development, 2020, 57(2): 346-362. |
刘俊旭, 孟小峰. 机器学习的隐私保护研究综述[J]. 计算机研究与发展, 2020, 57(2): 346-362. | |
[8] |
LI Fenghua, LI Hui, JIA Yan, et al. Privacy Computing: Concept, Connotation and Its Research Trend[J]. Journal on Communications, 2016, 37(4): 1-11.
doi: 10.11959/j.issn.1000-436x.2016078 |
李凤华, 李晖, 贾焰, 等. 隐私计算研究范畴及发展趋势[J]. 通信学报, 2016, 37(4): 1-11.
doi: 10.11959/j.issn.1000-436x.2016078 |
|
[9] | LIM W Y B, LUONG N C, HOANG D T, et al. Federated Learning in Mobile Edge Networks: A Comprehensive Survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(3): 2031-2063. |
[10] | MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-Efficient Learning of Deep Networks from Decentralized Data[C]// PMLR. Artificial Intelligence and Statistics. New York: PMLR, 2017: 1273-1282. |
[11] | ALEDHARI M, RAZZAK R, PARIZI R M, et al. Federated Learning: A Survey on Enabling Technologies, Protocols, and Applications[J]. IEEE Access, 2020, 8: 140699-140725. |
[12] | LI Li, FAN Yuxi, TSE M, et al. A Review of Applications in Federated Learning[J]. Computers & Industrial Engineering, 2020, 149(8): 106854-106868. |
[13] | RIEKE N, HANCOX J, LI Wenqi, et al. The Future of Digital Health with Federated Learning[J]. NPJ Digital Medicine, 2020, 3(1): 1-7. |
[14] | CHANDOLA V, BANERJEE A, KUMAR V. Anomaly Detection: A Survey[J]. ACM Computing Surveys (CSUR), 2009, 41(3): 1-58. |
[15] | LIU Yi, GARG S, NIE Jiangtian, et al. Deep Anomaly Detection for Time-Series Data in Industrial IoT: A Communication-Efficient on-Device Federated Learning Approach[J]. IEEE Internet of Things Journal, 2020, 8(8): 6348-6358. |
[16] | ZHANG Kai, JIANG Yushan, SEVERSKY L, et al. Federated Variational Learning for Anomaly Detection in Multivariate Time Series[C]// IEEE. 2021 IEEE International Performance, Computing, and Communications Conference (IPCCC). New York: IEEE, 2021: 1-9. |
[17] | HUONG T T, BAC T P, LONG D M, et al. Detecting Cyberattacks Using Anomaly Detection in Industrial Control Systems: A Federated Learning Approach[J]. Computers in Industry, 2021, 132(C): 103509-103524. |
[18] | ZHAO Ruijie, YIN Yue, SHI Yong, et al. Intelligent Intrusion Detection Based on Federated Learning Aided Long Short-Term Memory[J]. Physical Communication, 2020, 42(6): 101157-101165. |
[19] | TRAN D H, UTAMA I B K Y, JANG Y M. An Improved Sensor Anomaly Detection Method in IoT System Using Federated Learning[C]// IAUFN. 2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN). New York: IEEE, 2022: 466-469. |
[20] | CHEN Zhou, LYU Na, LIU Pengfei, et al. Intrusion Detection for Wireless Edge Networks Based on Federated Learning[J]. IEEE Access, 2020, 8(8): 217463-217472. |
[21] | MOTHUKURI V, KHARE P, PARIZI R M, et al. Federated-Learning-Based Anomaly Detection for IoT Security Attacks[J]. IEEE Internet of Things Journal, 2021, 9(4): 2545-2554. |
[22] | WU Dongmin, DENG Yi, LI Mingyong. FL-MGVN: Federated Learning for Anomaly Detection Using Mixed Gaussian Variational Self-Encoding Network[J]. Information Processing & Management, 2022, 59(2): 102839-102853. |
[23] | TRUONG H T, TA B P, LE Q A, et al. Light-Weight Federated Learning-Based Anomaly Detection for Time-Series Data in Industrial Control Systems[J]. Computers in Industry, 2022, 140(C): 103692-103707. |
[24] | NARDI M, VALERIO L, PASSARELLA A. Anomaly Detection through Unsupervised Federated Learning[C]// IEEE. 2022 18th International Conference on Mobility, Sensing and Networking (MSN). New York: IEEE, 2022: 495-501. |
[25] | NOVOA P D, FONTENLA R O, GUIJARRO B B. Fast Deep Autoencoder for Federated Learning[J]. Pattern Recognition, 2023, 143(1): 109805-109817. |
[26] | IDRISSI M J, ALAMI H, EL M A, et al. Fed-Anids: Federated Learning for Anomaly-Based Network Intrusion Detection Systems[J]. Expert Systems with Applications, 2023, 234(3): 121000-121010. |
[27] | ZHAO Ying, CHEN Junjun, WU Di, et al. Multi-Task Network Anomaly Detection Using Federated Learning[C]// IEEE. Proceedings of The 10th International Symposium on Information and Communication Technology. New York: IEEE, 2019: 273-279. |
[28] | HU Ziheng, XIE Hongtao, YU Lingyun, et al. Dynamic-Aware Federated Learning for Face Forgery Video Detection[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2022, 13(4): 1-25. |
[29] | WANG Xiaoding, GARG S, LIN Hu, et al. Toward Accurate Anomaly Detection in Industrial Internet of Things Using Hierarchical Federated Learning[J]. IEEE Internet of Things Journal, 2021, 9(1): 7110-7119. |
[30] | MARFO W, TOSH D K, MOORE S V. Network Anomaly Detection Using Federated Learning[C]// IEEE. MILCOM 2022-2022 IEEE Military Communications Conference (MILCOM). New York: IEEE, 2022: 484-489. |
[31] | MANYADZA T J, DU Haizhou, WANG Shiwei, et al. FL-Finder: Detecting Unknown Network Anomaly in Federated Learning[C]// IEEE. 2022 5th International Conference on Artificial Intelligence and Big Data (ICAIBD). New York: IEEE, 2022: 593-597. |
[32] | JITHISH J, ALANGOT B, MAHALINGAM N, et al. Distributed Anomaly Detection in Smart Grids: A Federated Learning-Based Approach[J]. IEEE Access, 2023, 11(3): 7157-7179. |
[33] | VADIGI S, SETHI K, MOHANTY D, et al. Federated Reinforcement Learning Based Intrusion Detection System Using Dynamic Attention Mechanism[J]. Journal of Information Security and Applications, 2023, 78(7): 103608-103622. |
[34] | LIANG Feng, YANG Enyue, PAN Weike, et al. Survey of Recommender Systems Based on Federated Learning[J]. Scientia Sinica Informationis, 2022, 52(5): 713-741. |
梁锋, 羊恩跃, 潘微科, 等. 基于联邦学习的推荐系统综述[J]. 中国科学:信息科学, 2022, 52(5): 713-741. | |
[35] | JIN Bowen, GAO Chen, HE Xiangnan, et al. Multi-Behavior Recommendation with Graph Convolutional Networks[C]// ACM. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 659-668. |
[36] | WANG Xiang, HE Xiangnan, WANG Meng, et al. Neural Graph Collaborative Filtering[C]// ACM SIGIR. Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 165-174. |
[37] | YING Zhitao, HE Ruining, CHEN Kaifeng, et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems[C]// ACM. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 974-983. |
[38] | WU Shu, TANG Yuyuan, ZHU Yanqiao, et al. Session-Based Recommendation with Graph Neural Networks[C]// AAAI. Proceedings of the AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2019: 346-353. |
[39] | ZHOU Jie, CUI Ganqu, HU Shengding, et al. Graph Neural Networks: A Review of Methods and Applications[J]. AI Open, 2020, 1(1): 57-81. |
[40] | HUANG Chao, XU Huance, XU Yong, et al. Knowledge-Aware Coupled Graph Neural Network for Social Recommendation[C]// AAAI. Proceedings of the AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2021: 4115-4122. |
[41] | WU Chuhan, WU Fangzhao, CAO Yang, et al. Fedgnn: Federated Graph Neural Network for Privacy-Preserving Recommendation[EB/OL]. (2021-02-18)[2024-05-23]. https://arxiv.org/pdf/2102.04925. |
[42] | LUO Sichun, XIAO Yuanzhang, SONG Linqi. Personalized Federated Recommendation via Joint Representation Learning, User Clustering, and Model Adaptation[C]// ACM. Proceedings of the 31st ACM International Conference on Information & Knowledge Management. New York: ACM, 2022: 4289-4293. |
[43] | LIU Zhiwei, YANG Liangwei, FAN Ziwei, et al. Federated Social Recommendation with Graph Neural Network[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2022, 13(4): 1-24. |
[44] | YAO Yuhang, KAMANI M M, CHENG Zhongwei, et al. FedRule: Federated Rule Recommendation System with Graph Neural Networks[C]// ACM. Proceedings of the 8th ACM/IEEE Conference on Internet of Things Design and Implementation. New York: ACM, 2023: 197-208. |
[45] | LI Zheng, BILAL M, XU Xiaolong, et al. Federated Learning-Based Cross-Enterprise Recommendation with Graph Neural Networks[J]. IEEE Transactions on Industrial Informatics, 2022, 19(1): 673-682. |
[46] | YIN Yuyu, LI Youhuizi, GAO Honghao, et al. FGC: GCN-Based Federated Learning Approach for Trust Industrial Service Recommendation[J]. IEEE Transactions on Industrial Informatics, 2022, 19(3): 3240-3250. |
[47] | HU Hexuan, CAO Chengcheng, HU Qiang, et al. Federated Learning Enabled Graph Convolutional Autoencoder and Factorization Machine for Potential Friendship Prediction in Social Networks[J]. Information Fusion, 2024, 102(2): 102042-102050. |
[48] | FLANAGAN A, OYOMNO W, GRIGORIEVSKIY A, et al. Federated Multi-View Matrix Factorization for Personalized Recommendations[C]// Springer. Machine Learning and Knowledge Discovery in Databases:European Conference(ECML PKDD 2020). Heidelberg: Springer, 2021: 324-347. |
[49] | MAI Peihua, PANG Yan. Privacy-Preserving Multi-View Matrix Factorization for Recommender Systems[J]. IEEE Transactions on Artificial Intelligence, 2024, 5(1): 267-277. |
[50] | DU Yongjie, ZHOU Deyun, XIE Yu, et al. Federated Matrix Factorization for Privacy-Preserving Recommender Systems[J]. Applied Soft Computing, 2021, 111(3): 107700-107709. |
[51] | LU C, FAN Yushun, WU Xing, et al. FMFParking: Federated Matrix Factorization For Parking Lot Recommendation[C]// IEEE. 2021 IEEE Seventh International Conference on Big Data Computing Service and Applications (BigDataService). New York: IEEE, 2021: 131-136. |
[52] | LIN Yujie, REN Pengjie, CHEN Zhumin, et al. Meta Matrix Factorization for Federated Rating Predictions[C]// ACM. Proceedings of The 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 981-990. |
[53] | ANELLI V W, DELDJOO Y, DI N T, et al. User-Controlled Federated Matrix Factorization for Recommender Systems[J]. Journal of Intelligent Information Systems, 2022, 58(2): 287-309. |
[54] | LIU Shuchang, GE Yingqiang, XU Shuyuan, et al. Fairness-Aware Federated Matrix Factorization[C]// ACM. Proceedings of the 16th ACM Conference on Recommender Systems. New York: ACM, 2022: 168-178. |
[55] | ZHANG Honglei, LUO Fangyuan, WU Jun, et al. LightFR: Lightweight Federated Recommendation with Privacy-Preserving Matrix Factorization[J]. ACM Transactions on Information Systems, 2023, 41(4): 1-28. |
[56] | JALALIRAD A, SCAVUZZO M, CAPOTA C, et al. A Simple and Efficient Federated Recommender System[C]// IEEE. Proceedings of the 6th IEEE/ACM International Conference on Big Data Computing, Applications and Technologies. New York: IEEE, 2019: 53-58. |
[57] | WANG Qinyong, YING Hongzhi, CHEN Tong, et al. Fast-Adapting and Privacy-Preserving Federated Recommender System[J]. The VLDB Journal, 2022, 31(5): 877-896. |
[58] | KHAN F K, FLANAGAN A, TAN K E, et al. A Payload Optimization Method for Federated Recommender Systems[C]// ACM. Proceedings of the 15th ACM Conference on Recommender Systems. New York: ACM, 2021: 432-442. |
[59] | WANG Yanan, WEI Yanfei, CHENG Xiaodong, et al. Federated News Recommendation Model Learning[C]// IEEE. 2023 4th International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). New York: IEEE, 2023: 432-436. |
[60] | BEBENSEE B. Local Differential Privacy: A Tutorial[EB/OL]. (2019-07-07)[2024-05-22]. https://arxiv.org/pdf/1907.11908. |
[61] | VYAS J, DAS D, CHAUDHURY S. Federated Learning Based Driver Recommendation for Next Generation Transportation System[J]. Expert Systems with Applications, 2023, 225(1): 119951-119959. |
[62] | YUAN Wei, YIN Hongzhi, WU Fangzhao, et al. Federated Unlearning for on-Device Recommendation[C]// ACM. Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining. New York: ACM, 2023: 393-401. |
[63] | JIN Cheng, CHEN Xuandong, GU Yi, et al. FedDyn: A Dynamic and Efficient Federated Distillation Approach on Recommender System[C]// IEEE. 2022 IEEE 28th International Conference on Parallel and Distributed Systems (ICPADS). New York: IEEE, 2023: 786-793. |
[64] | CAMBRIA E, WHITE B. Jumping NLP Curves: A Review of Natural Language Processing Research[J]. IEEE Computational Intelligence Magazine, 2014, 9(2): 48-57. |
[65] | RAMES G V, CHENNUPATI G, RAO M, et al. Federated Representation Learning for Automatic Speech Recognition[EB/OL]. (2023-08-07)[2024-02-22]. https://arxiv.org/pdf/2308.02013. |
[66] |
LI Tian, SAHU A K, TALWALKAR A, et al. Federated Learning: Challenges, Methods, and Future Directions[J]. IEEE Signal Processing Magazine, 2020, 37(3): 50-60.
doi: 10.1109/MSP.2020.2975749 |
[67] | RAO M, CHENNUPATI G, TIWARI G, et al. Federated Self-Learning with Weak Supervision for Speech Recognition[C]// IEEE. ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New York: IEEE, 2023: 1-5. |
[68] | YU W, FREIWALD J, TEWES S, et al. Federated Learning in ASR: Not as Easy as You Think[C]// VDE Verlag. Speech Communication; 14th ITG Conference. Berlin:VDE Verlag, 2021: 1-5. |
[69] | RAVANELLI M, PARCOLLET T, BENGIO Y. The Pytorch-Kaldi Speech Recognition Toolkit[C]// IEEE. ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New York: IEEE, 2019: 6465-6469. |
[70] | WATANABE S, HORI T, KARITA S, et al. Espnet: End-to-End Speech Processing Toolkit[EB/OL]. (2018-04-30)[2024-01-22]. https://arxiv.org/pdf/1804.00015. |
[71] | GULIANI D, BEAUFAYS F, MOTTA G. Training Speech Recognition Models with Federated Learning: A Quality/Cost Framework[C]// IEEE. ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New York: IEEE, 2021: 3080-3084. |
[72] | AZAM S S, LIKHOMANENKO T, PELIKAN M. Importance of Smoothness Induced by Optimizers in Fl4Asr: Towards Understanding Federated Learning for End-To-End ASR[C]// IEEE. 2023 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU). New York: IEEE, 2023: 1-8. |
[73] | ZHOU Lilian, DING Yuxin, CHEN Mingqing, et al. The Gift of Feedback: Improving ASR Model Quality by Learning from User Corrections through Federated Learning[C]// IEEE. 2023 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU). New York: IEEE, 2023: 1-7. |
[74] | FARAHANI B, TABIBIAN S, EBRAHIMI H. Towards A Personalized Clustered Federated Learning: A Speech Recognition Case Study[J]. IEEE Internet of Things Journal, 2023, 10(1): 18553-18562. |
[75] | TSOUVALAS V, OZCELEBI T, MERATNIA N. Privacy-Preserving Speech Emotion Recognition through Semi-Supervised Federated Learning[C]// IEEE. 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). New York: IEEE, 2022: 359-364. |
[76] | MOHAMMADI S, MOHAMMADI M, SINAEI S, et al. Balancing Privacy and Accuracy in Federated Learning for Speech Emotion Recognition[C]// IEEE. 2023 18th Conference on Computer Science and Intelligence Systems (FedCSIS). New York: IEEE, 2023: 191-199. |
[77] | MISHCHENKO K, MOHAMMADI S, MOHAMMADI M, et al. Hyperparameters Optimization for Federated Learning System: Speech Emotion Recognition Case Study[C]// IEEE. 2023 Eighth International Conference on Fog and Mobile Edge Computing (FMEC). New York: IEEE, 2023: 80-86. |
[78] | REYNOLDS D A. Automatic Speaker Recognition Using Gaussian Mixture Speaker Models[J]. Lincoln Laboratory Journal, 1995, 8(2): 173-191. |
[79] | WOUBIE A, BACKSTROM T. Federated Learning for Privacy-Preserving Speaker Recognition[J]. IEEE Access, 2021, 9(1): 149477-149485. |
[80] | CHEN Zhiyong, XU Shugong. Learning Domain-Heterogeneous Speaker Recognition Systems with Personalized Continual Federated learning[J]. EURASIP Journal on Audio, Speech, and Music Processing, 2023, 2023(1): 1-17. |
[81] | NAGY B, HEGEDUS I, SANDOR N, et al. Privacy-Preserving Federated Learning and Its Application to Natural Language Processing[J]. Knowledge-Based Systems, 2023, 268(2): 110475-110486. |
[82] | WANG Jianzong, HUANG Zhangcheng, KONG Lingwei, et al. Modeling without Sharing Privacy: Federated Neural Machine Translation[C]// IEEE. Web Information Systems Engineering-WISE 2021: 22nd International Conference on Web Information Systems Engineering(WISE 2021). New York: IEEE, 2021: 216-223. |
[83] | AIT-MLOUK A, ALAWADI S A, TOOR S, et al. FedQAS: Privacy-Aware Machine Reading Comprehension with Federated Learning[J]. Applied Sciences, 2022, 12(6): 3130-3142. |
[84] | REN Hanchi, DENG Jingjing, XIE Xianghua, et al. FedBoosting: Federated Learning with Gradient Protected Boosting for Text Recognition[J]. Neurocomputing, 2024, 569(7): 127126-127137. |
[1] | GUO Qian, ZHAO Jin, GUO Yi. Hierarchical Clustering Federated Learning Framework for Personalized Privacy-Preserving [J]. Netinfo Security, 2024, 24(8): 1196-1209. |
[2] | ZHOU Shucheng, LI Yang, LI Chuanrong, GUO Lulu, JIA Xinhong, YANG Xinghua. Context-Based Abnormal Root Cause Algorithm [J]. Netinfo Security, 2024, 24(7): 1062-1075. |
[3] | XUE Mingzhu, HU Liang, WANG Ming, WANG Feng. TAP Rule Processing System Based on Federated Learning and Blockchain Technology [J]. Netinfo Security, 2024, 24(3): 473-485. |
[4] | LIN Yihang, ZHOU Pengyuan, WU Zhiqian, LIAO Yong. Federated Learning Backdoor Defense Method Based on Trigger Inversion [J]. Netinfo Security, 2024, 24(2): 262-271. |
[5] | JIN Zhigang, DING Yu, WU Xiaodong. Federated Intrusion Detection Algorithm with Bilateral Correction Merging Gradient Difference [J]. Netinfo Security, 2024, 24(2): 293-302. |
[6] | LAN Haoliang, WANG Qun, XU Jie, XUE Yishi, ZHANG Bo. Review of Research on Blockchain-Based Federated Learning [J]. Netinfo Security, 2024, 24(11): 1643-1654. |
[7] | ZHOU Shengli, XU Rui, CHEN Tinggui, JIANG Keyi. Research on the Evolution of Defrauded Network Behavior Risk Based on Eventic Graph [J]. Netinfo Security, 2024, 24(11): 1696-1709. |
[8] | SA Qirui, YOU Weijing, ZHANG Yifei, QIU Weiyang, MA Cunqing. A Survey of Ownership Protection Schemes for Federated Learning Models [J]. Netinfo Security, 2024, 24(10): 1553-1561. |
[9] | CHEN Jing, ZHANG Jian. A Data-Free Personalized Federated Learning Algorithm Based on Knowledge Distillation [J]. Netinfo Security, 2024, 24(10): 1562-1569. |
[10] | WU Lizhao, WANG Xiaoding, XU Tian, QUE Youxiong, LIN Hui. Defense Strategies against Poisoning Attacks in Semi-Asynchronous Federated Learning [J]. Netinfo Security, 2024, 24(10): 1578-1585. |
[11] | WU Haotian, LI Yifan, CUI Hongyan, DONG Lin. Federated Learning Incentive Scheme Based on Zero-Knowledge Proofs and Blockchain [J]. Netinfo Security, 2024, 24(1): 1-13. |
[12] | ZHAO Jia, YANG Bokai, RAO Xinyu, GUO Yating. Design and Implementation of Tor Traffic Detection Algorithm Based on Federated Learning [J]. Netinfo Security, 2024, 24(1): 60-68. |
[13] | XU Ruzhi, DAI Lipeng, XIA Diya, YANG Xin. Research on Centralized Differential Privacy Algorithm for Federated Learning [J]. Netinfo Security, 2024, 24(1): 69-79. |
[14] | LAI Chengzhe, ZHAO Yining, ZHENG Dong. A Privacy Preserving and Verifiable Federated Learning Scheme Based on Homomorphic Encryption [J]. Netinfo Security, 2024, 24(1): 93-105. |
[15] | PENG Hanzhong, ZHANG Zhujun, YAN Liyue, HU Chenglin. Research on Intrusion Detection Mechanism Optimization Based on Federated Learning Aggregation Algorithm under Consortium Chain [J]. Netinfo Security, 2023, 23(8): 76-85. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||