Netinfo Security ›› 2024, Vol. 24 ›› Issue (3): 449-461.doi: 10.3969/j.issn.1671-1122.2024.03.010
Previous Articles Next Articles
FU Yanming1,2,3, LU Shenglin1, CHEN Jiayuan1(), QIN Hua1
Received:
2024-01-29
Online:
2024-03-10
Published:
2024-04-03
Contact:
CHEN Jiayuan
E-mail:ycq_cjy@163.com
CLC Number:
FU Yanming, LU Shenglin, CHEN Jiayuan, QIN Hua. Dynamic Task Allocation for Crowd Sensing Based on Deep Reinforcement Learning and Privacy Protection[J]. Netinfo Security, 2024, 24(3): 449-461.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2024.03.010
[1] | GANTI R K, YE Fan, LEI Hui. Mobile Crowdsensing: Current State and Future Challenges[J]. IEEE Communications Magazine, 2011, 49(11): 32-39. |
[2] | CAPPONI A, FIANDRINO C, KANTARCI B, et al. A Survey on Mobile Crowdsensing Systems: Challenges, Solutions, and Opportunities[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2419-2465. |
[3] |
ZHENG Zhenzhe, WU Fan, GAO Xiaofeng, et al. A Budget Feasible Incentive Mechanism for Weighted Coverage Maximization in Mobile Crowdsensing[J]. IEEE Transactions on Mobile Computing, 2016, 16(9): 2392-2407.
doi: 10.1109/TMC.2016.2632721 URL |
[4] |
WANG Xiong, ZHANG Jinbei, TIAN Xiaohua, et al. Crowdsensing-Based Consensus Incident Report for Road Traffic Acquisition[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(8): 2536-2547.
doi: 10.1109/TITS.2017.2750169 URL |
[5] |
BALLESTEROS J, CARBUNAR B, RAHMAN M, et al. Towards Safe Cities: A Mobile and Social Networking Approach[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 25(9): 2451-2462.
doi: 10.1109/TPDS.2013.190 URL |
[6] |
ALEMDAR H, ERSOY C. Wireless Sensor Networks for Healthcare: A Survey[J]. Computer Networks, 2010, 54(15): 2688-2710.
doi: 10.1016/j.comnet.2010.05.003 URL |
[7] | JIANG Weijin, CHEN Junpeng, LIU Xiaoliang, et al. Participant Recruitment Method Aiming at Service Quality in Mobile Crowd Sensing[J]. Wireless Communications and Mobile Computing, 2021(3): 1-14. |
[8] |
WANG Jiangtao, WANG Yasha, ZHANG Daqing, et al. Multi-Task Allocation in Mobile Crowd Sensing with Individual Task Quality Assurance[J]. IEEE Transactions on Mobile Computing, 2018, 17(9): 2101-2113.
doi: 10.1109/TMC.7755 URL |
[9] | WU Shengnan, WANG Yingjie, TONG Xiangrong. Multi-Objective Task Assignment for Maximizing Social Welfare in Spatio-Temporal Crowdsourcing[J]. China Communications, 2021, 18(11): 11-25. |
[10] |
LI Xin, ZHANG Xinglin. Multi-Task Allocation under Time Constraints in Mobile Crowdsensing[J]. IEEE Transactions on Mobile Computing, 2019, 20(4): 1494-1510.
doi: 10.1109/TMC.7755 URL |
[11] |
TAO Xi, SONG Wei. Profit-Oriented Task Allocation for Mobile Crowdsensing with Worker Dynamics: Cooperative Offline Solution and Predictive Online Solution[J]. IEEE Transactions on Mobile Computing, 2020, 20(8): 2637-2653.
doi: 10.1109/TMC.2020.2983688 URL |
[12] |
SONG Tianshu, XU Ke, LI Jiangneng, et al. Multi-Skill Aware Task Assignment in Real-Time Spatial Crowdsourcing[J]. GeoInformatica, 2020, 24: 153-173.
doi: 10.1007/s10707-019-00351-4 |
[13] |
XIAO Mingjun, WU Jie, HUANG Liusheng, et al. Online Task Assignment for Crowdsensing in Predictable Mobile Social Networks[J]. IEEE Transactions on Mobile Computing, 2016, 16(8): 2306-2320.
doi: 10.1109/TMC.2016.2616473 URL |
[14] | MIAO Xin, KANG Yanrong, MA Qiang, et al. Quality-Aware Online Task Assignment in Mobile Crowdsourcing[J]. ACM Transactions on Sensor Networks, 2020, 16(3): 1-21. |
[15] | ZHAO Pengcheng, LI Xiang, GAO Shang, et al. Cooperative Task Assignment in Spatial Crowdsourcing via Multi-Agent Deep Reinforcement Learning[EB/OL]. (2022-05-23)[2023-12-12]. https://doi.org/10.1016/j.sysarc.2022.102551. |
[16] |
PAN Qingxian, PAN Tingwei, DONG Hongbin, et al. An Online Task Assignment Based on Quality Constraint for Spatio-Temporal Crowdsourcing[J]. IEEE Access, 2019, 7: 170292-170303.
doi: 10.1109/ACCESS.2019.2942155 |
[17] |
ZHAO Bingxu, DONG Hongbin, WANG Yingjie, et al. A Task Allocation Algorithm Based on Reinforcement Learning in Spatio-Temporal Crowdsourcing[J]. Applied Intelligence, 2023, 53(11): 13452-13469.
doi: 10.1007/s10489-022-04151-6 |
[18] | TO H, SHAHABI C, KAZEMI L. A Server-Assigned Spatial Crowdsourcing Framework[J]. ACM Transactions on Spatial Algorithms and Systems, 2015, 1(1): 1-28. |
[19] | WANG Mingze, WANG Yingjie, SAI A, et al. Task Assignment for Hybrid Scenarios in Spatial Crowdsourcing: A Q-Learning-Based Approach[EB/OL]. (2022-11-04)[2023-12-12]. https://doi.org/10.1016/j.asoc.2022.109749. |
[20] |
SUN Lijun, YU Xiaojie, GUO Jiachen, et al. Deep Reinforcement Learning for Task Assignment in Spatial Crowdsourcing and Sensing[J]. IEEE Sensors Journal, 2021, 21(22): 25323-25330.
doi: 10.1109/JSEN.2021.3057376 URL |
[21] | YANG Hai, QIN Xiaoran, KE Jintao, et al. Optimizing Matching Time Interval and Matching Radius in on-Demand Ride-Sourcing Markets[J]. Transportatio Research Part B: Met-Hodological, 2020, 131: 84-105. |
[22] | WANG Yansheng, TONG Yongxin, LONG Cheng, et al. Adaptive Dynamic Bipartite Graph Matching: A Reinforcement Learning Approach[C]// IEEE. 2019 IEEE 35th International Conference on Data Engineering(ICDE). New York: IEEE, 2019: 1478-1489. |
[23] |
SUN Yong, TAN Wenan. A Trust-Aware Task Allocation Method Using Deep Q-Learning for Uncertain Mobile Crowdsourcing[J]. Human-Centric Computing and Information Sciences, 2019, 9: 1-27.
doi: 10.1186/s13673-018-0162-5 |
[24] |
LIU Chi, DAI Zipeng, ZHAO Yinuo, et al. Distributed and Energy-Efficient Mobile Crowdsensing with Charging Stations by Deep Reinforcement Learning[J]. IEEE Transactions on Mobile Computing, 2019, 20(1): 130-146.
doi: 10.1109/TMC.7755 URL |
[25] | YAO Changhua, XU Hao, FU Shu, et al. Fast Multi-Agent Collaborative Exploration Algorithm Based on Boundary Point Filtering[J]. Netinfo Security, 2023, 23(11): 58-68. |
姚昌华, 许浩, 付澍, 等. 基于边界点过滤的多智能体快速协同探索算法[J]. 信息网络安全, 2023, 23(11):58-68. | |
[26] | TAO Xi, SONG Wei. Task Allocation for Mobile Crowdsensing with Deep Reinforcement Learning[C]// IEEE. 2020 IEEE Wireless Communications and Networking Conference(WCNC). New York: IEEE, 2020: 1-7. |
[27] | DWORK C. Differential Privacy[C]// Springer. International Colloquium on Automata, Languages, and Programming. Heidelberg: Springer, 2006: 1-12. |
[28] |
TO H, GHINITA G, SHAHABI C. Framework for Protecting Worker Location Privacy in Spatial Crowdsourcing[J]. Proceedings of the VLDB Endowment, 2014, 7(10): 919-930.
doi: 10.14778/2732951.2732966 URL |
[29] | YAN Yan, ZHANG Xiong, FENG Tao. Proportional Differential Privacy Budget Allocation Method for Partition and Publishing of Statistical Big Data[J]. Netinfo Security, 2022, 22(11): 24-35. |
晏燕, 张雄, 冯涛. 大数据统计划分发布的等比差分隐私预算分配方法[J]. 信息网络安全, 2022, 22(11):24-35. | |
[30] |
WANG Leye, YANG Dingqi, HAN Xiao, et al. Mobile Crowdsourcing Task Allocation with Differential-and-Distortion Geo-Obfuscation[J]. IEEE Transactions on Dependable and Secure Computing, 2019, 18(2): 967-981.
doi: 10.1109/TDSC.8858 URL |
[31] | ANDRÉS M E, BORDENABE N E, CHATZIKOKOLAKIS K, et al. Geo-Indistinguishability: Differential Privacy for Location-Based Systems[C]// ACM. The 2013 ACM SIGSAC Conference on Computer & Communications Security. New York: ACM, 2013: 901-914. |
[32] |
ZHANG Qi, WANG Yingjie, CAI Zhipeng, et al. Multi-Stage Online Task Assignment Driven by Offline Data under Spatio-Temporal Crowdsourcing[J]. Digital Communications and Networks, 2022, 8(4): 516-530.
doi: 10.1016/j.dcan.2021.10.005 URL |
[33] | SONG Tianshu, TONG Yongxin, WANG Libin, et al. Trichromatic Online Matching in Real-Time Spatial Crowdsourcing[C]// IEEE. 2017 IEEE 33rd International Conference on Data Engineering(ICDE). New York: IEEE, 2017: 1009-1020. |
[1] | SONG Yuhan, ZHU Yuefei, WEI Fushan. An Anomaly Detection Scheme for Blockchain Transactions Based on AdaBoost Model [J]. Netinfo Security, 2024, 24(1): 24-35. |
[2] | XU Ke, LI Jiayi, JIANG Xinghao, SUN Tanfeng. A Video Gait Privacy Protection Algorithm Based on Sparse Adversarial Attack on Silhouette [J]. Netinfo Security, 2024, 24(1): 48-59. |
[3] | YU Huifang, QIAO Yifan, MENG Ru. Attribute-Based Anti-Quantum Threshold Ring Signcryption Scheme for Blockchain-Based Finance [J]. Netinfo Security, 2023, 23(7): 44-52. |
[4] | TANG Yu, ZHANG Chi. A Privacy Protection Scheme for Information-Centric Networking Based on Intel SGX [J]. Netinfo Security, 2023, 23(6): 55-65. |
[5] | DU Weidong, LI Min, HAN Yiliang, WANG Xu’an. An Efficient Versatile Homomorphic Encryption Framework Based on Ciphertext Conversion Technique [J]. Netinfo Security, 2023, 23(4): 51-60. |
[6] | YIN Shu, CHEN Xingshu, ZHU Yi, ZENG Xuemei. Anonymous Domain Name Algorithm Based on Character Space Construction [J]. Netinfo Security, 2023, 23(4): 80-89. |
[7] | GUO Rui, WEI Xin, CHEN Li. An Outsourceable and Policy-Hidden Attribute-Based Encryption Scheme in the IIoT System [J]. Netinfo Security, 2023, 23(3): 1-12. |
[8] | ZHANG Xuewang, ZHANG Hao, YAO Yaning, FU Jiali. Privacy Protection Scheme of Consortium Blockchain Based on Group Signature and Homomorphic Encryption [J]. Netinfo Security, 2023, 23(3): 56-61. |
[9] | LI Jiahui, QIN Sujuan, GAO Fei, SUN Dongxu. Controllable and Supervised Privacy Protection Scheme for Blockchain Organization Transaction Based on Attribute Encryption [J]. Netinfo Security, 2023, 23(12): 103-112. |
[10] | YU Jing, YUAN Shuguang, YUAN Yulin, CHEN Chi. A Robust Watermarking Technology Based on k-Anonymity Dataset [J]. Netinfo Security, 2022, 22(9): 11-20. |
[11] | ZHANG Xuewang, LIU Yufan. Identity Traceable Anonymous Authentication Scheme for Nodes in the Perception Layer of IoT [J]. Netinfo Security, 2022, 22(9): 55-62. |
[12] | CHEN Binjie, WEI Fushan, GU Chunxiang. Blockchain Abnormal Transaction Detection with Privacy-preserving Based on KNN [J]. Netinfo Security, 2022, 22(3): 78-84. |
[13] | LIANG Guangjun, XIN Jianfang, NI Xueli, MA Zhuo. Research on Smart Speaker Security and Forensics [J]. Netinfo Security, 2022, 22(10): 108-113. |
[14] | GU Haiyan, JIANG Tong, MA Zhuo, ZHU Jipeng. Research of Improved k-Anonymity Algorithm and Its Application in Privacy Protection [J]. Netinfo Security, 2022, 22(10): 52-58. |
[15] | XU Shuo, ZHANG Rui, XIA Hui. Privacy-preserving Strategies for Federated Learning Based on Data Attribute Modification [J]. Netinfo Security, 2022, 22(1): 55-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||