Netinfo Security ›› 2025, Vol. 25 ›› Issue (6): 859-871.doi: 10.3969/j.issn.1671-1122.2025.06.002
Previous Articles Next Articles
SUN Jianwen1(
), ZHANG Bin1, SI Nianwen2, FAN Ying3
Received:2025-02-20
Online:2025-06-10
Published:2025-07-11
CLC Number:
SUN Jianwen, ZHANG Bin, SI Nianwen, FAN Ying. Lightweight Malicious Traffic Detection Method Based on Knowledge Distillation[J]. Netinfo Security, 2025, 25(6): 859-871.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2025.06.002
| 测试 数据集 | 模型 (transformer层数) | AC | PR | RC | F1 | 推理速度(个/s) |
|---|---|---|---|---|---|---|
| USTC-TFC2016 | Model-T(12) | 99.60% | 98.80% | 99.12% | 98.95% | 1033.58 |
| Model-S(1) | 99.38% | 97.82% | 98.62% | 98.17% | 10917.74 | |
| ISCX-VPN2016-Service | Model-T(12) | 100% | 100% | 100% | 100% | 1315.90 |
| Model-S(1) | 100% | 100% | 100% | 100% | 13620.15 | |
| CSE-CIC-IDS2018 | Model-T(12) | 99.94% | 97.57% | 99.99% | 98.54% | 1051.96 |
| Model-S(1) | 99.86% | 96.17% | 98.95% | 97.21% | 10789.78 |
| 方法 | 模型大小 /MB | USTC-TFC2016 | ISCX-VPN2016-Service | ||
|---|---|---|---|---|---|
| AC | F1 | AC | F1 | ||
| ET-BERT[ | 504 | 98.97% | 99.02% | 99.92% | 99.95% |
| TrafficFormer[ | 504 | 98.16% | 98.30% | 95.89% | 95.80% |
| 本文(Model-T) | 286 | 99.60% | 98.95% | 100% | 100% |
| TSCRNN[ | 11.7 | 96.90% | 96.85% | 88.04% | 89.26% |
| DeepPacket[ | 38.5 | 95.36% | 93.88% | 90.66% | 89.83% |
| FS-Net[ | 25.7 | 97.60% | 96.90% | — | — |
| MLSTM-FCN[ | 29.1 | 97.00% | 96.30% | — | — |
| 本文方法 | 26 | 99.38% | 98.17% | 100% | 100% |
| 数据集 | 模型 (transformer层数) | AC | PR | RC | F1 | 模型大小/MB |
|---|---|---|---|---|---|---|
| USTC-TFC2016 | Model-T(12) | 99.60% | 98.80% | 99.12% | 98.95% | 286.0 |
| Model-S(6) | 99.64% | 98.57% | 99.21% | 98.87% | 144.2 | |
| Model-S(2) | 99.58% | 98.77% | 99.06% | 98.90% | 49.7 | |
| Model-S(1) | 99.22% | 97.19% | 98.31% | 97.68% | 26.0 | |
| CSE-CIC-IDS2018 | Model-T(12) | 99.94% | 97.57% | 99.99% | 98.54% | 286.0 |
| Model-S(6) | 100% | 96.43% | 100% | 97.62% | 144.2 | |
| Model-S(2) | 99.98% | 94.51% | 99.99% | 95.64% | 49.7 | |
| Model-S(1) | 99.86% | 96.17% | 98.95% | 97.21% | 26.0 |
| [1] | ANDERSON B, MCGREW D. Machine Learning for Encrypted Malware Traffic Classification: Accounting for Noisy Labels and Non-Stationarity[C]// ACM. 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017: 1723-1732. |
| [2] | AHMED A M, ABDULLAH A, SUNIL K S, et al. Zero-Day Exploits Detection with Adaptive WavePCA-Autoencoder (AWPA) Adaptive Hybrid Exploit Detection Network (Ahednet)[EB/OL]. (2025-02-03)[2025-02-14]. https://www.nature.com/articles/s41598-025-87615-2. |
| [3] | ZHOU Jiajun, FU Wentao, SONG Hao, et al. Multi-View Correlation-Aware Network Traffic Detection on Flow Hypergraph[EB/OL]. (2025-01-15)[2025-02-14]. https://arxiv.org/abs/2501.08610. |
| [4] | MARÍN G, CASAS P, CAPDEHOURAT G. Deep in the Dark-Deep Learning-Based Malware Traffic Detection without Expert Knowledge[C]// IEEE. 2019 IEEE Security and Privacy Workshops (SPW). New York: IEEE, 2019: 36-42. |
| [5] | YANG Hongyu, ZHANG Haohao, HU Ze, et al. Survey on Network Abnormal Traffic Detection Based on Deep Learning[J]. Journal of Wuhan University(Natural Science Edition), 2025, 71(2): 159-172. |
| 杨宏宇, 张豪豪, 胡泽, 等. 基于深度学习的网络异常流量检测研究综述[J]. 武汉大学学报(理学版), 2025, 71(2):159-172. | |
| [6] | LIN Xinjie, XIONG Gang, GOU Gaopeng, et al. Et-Bert: A Contextualized Datagram Representation with Pre-training Transformers for Encrypted Traffic Classification[C]// ACM. 31st Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 633-642. |
| [7] | ZHOU Guangmeng, GUO Xiongwen, LIU Zhuotao, et al. TrafficFormer: An Efficient Pre-trained Model for Traffic Data[C]// IEEE. 2025 IEEE Symposium on Security and Privacy (SP). New York: IEEE, 2024: 1844-1860. |
| [8] | ZHAO Ruijie, ZHAN Mingwei, DENG Xianwen, et al. A Novel Self-Supervised Framework Based on Masked Autoencoder for Traffic Classification[J]. IEEE/ACM Transactions on Networking, 2024, 32(3): 2012-2025. |
| [9] | XU Ke, ZHANG Xixi, WANG Yu, et al. Self-Supervised Learning Malware Traffic Classification Based on Masked Auto-Encoder[J]. IEEE Internet of Things Journal, 2024, 11(10): 17330-17340. |
| [10] | CHENG Yu, WANG Duo, ZHOU Pan, et al. A Survey of Model Compression and Acceleration for Deep Neural Networks[EB/OL]. (2020-06-14)[2025-02-14]. https://arxiv.org/abs/1710.09282. |
| [11] | YOU Haoran, LI Chaojian, XU Pengfei, et al. Drawing Early-Bird Tickets: Towards More Efficient Training of Deep Networks[EB/OL]. (2022-02-16)[2025-02-14]. https://arxiv.org/abs/1909.11957v5. |
| [12] | HOWARD A G, ZHU Menglong, CHEN Bo, et al. Mobilenets: Efficient Convolutional Neural Networks for Mobile Vision Applications[EB/OL]. (2017-04-17)[2025-02-14]. https://arxiv.org/abs/1704.04861. |
| [13] | DONG Peijie, LI Lujun, WEI Zimian. Diswot: Student Architecture Search for Distillation without Training[C]// IEEE. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2023: 11898-11908. |
| [14] | WANG Boyao, PAN Rui, DIAO Shizhe, et al. Adapt-Pruner: Adaptive Structural Pruning for Efficient Small Language Model Training[EB/OL]. (2025-02-05)[2025-02-14]. https://arxiv.org/abs/2502.03460. |
| [15] | ZHU Kehan, HU Fuyi, DING Yuanbing, et al. A Comprehensive Review of Network Pruning Based on Pruning Granularity and Pruning Time Perspectives[EB/OL]. (2025-02-11)[2025-02-14]. https://doi.org/10.1016/j.neucom.2025.129382. |
| [16] | GONG Yunchao, LIU Liu, YANG Ming, et al. Compressing Deep Convolutional Networks Using Vector Quantization[EB/OL]. (2014-12-18)[2025-02-14]. https://arxiv.org/abs/1412.6115. |
| [17] | XU Yuwei, CAO Jie, SONG Kehui, et al. FastTraffic: A Lightweight Method for Encrypted Traffic Fast Classification[EB/OL]. (2023-08-16)[2025-02-14]. https://doi.org/10.1016/j.comnet.2023.109965. |
| [18] | HINTON G. Distilling the Knowledge in a Neural Network[EB/OL]. (2015-03-09)[2025-02-14]. https://arxiv.org/abs/1503.02531. |
| [19] | GUO Daya, YANG Dejian, ZHANG Haowei, et al. DeepSeek-R1:Incentivizing Reasoning Capability in Large Language Models via Reinforcement Learning[EB/OL]. (2025-01-22)[2025-02-14]. https://arxiv.org/abs/2501.12948. |
| [20] | ZHU Shizhou, XU Xiaolong, ZHAO Juan, et al. LKD-STNN: A Lightweight Malicious Traffic Detection Method for Internet of Things Based on Knowledge Distillation[J]. IEEE Internet of Things Journal, 2023, 11(4): 6438-6453. |
| [21] | WEN Yuecheng, HAN Xiaohui, ZUO Wenbo, et al. A Knowledge Distillation-Driven Lightweight CNN Model for Detecting Malicious Encrypted Network Traffic[C]// IEEE. 2024 International Joint Conference on Neural Networks (IJCNN 2024). New York: IEEE, 2024: 1-8. |
| [22] | ACETO G, BOVENZI G, CIUONZO D, et al. Characterization and Prediction of Mobile-App Traffic Using Markov Modeling[J]. IEEE Transactions on Network and Service Management, 2021, 18(1): 907-925. |
| [23] | FU Chuangpu, LI Qi, SHEN Meng, et al. Realtime Robust Malicious Traffic Detection via Frequency Domain Analysis[C]// ACM. Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2021: 3431-3446. |
| [24] | ZOU Zhuang, GE Jingguo, ZHENG Hongbo, et al. Encrypted Traffic Classification with a Convolutional Long Short-Term Memory Neural Network[C]// IEEE. 2018 IEEE 20th International Conference on High Performance Computing and Communications. New York: IEEE, 2018: 329-334. |
| [25] | HE Hongye, YANG Zhiguo, CHEN Xiangning. PERT: Payload Encoding Representation from Transformer for Encrypted Traffic Classification[C]//IEEE. 2020 ITU Kaleidoscope:Industry-Driven Digital Transformation (ITU K). New York: IEEE, 2020: 1-8. |
| [26] | ROMERO A, BALLAS N, KAHOUI S E, et al. Fitnets: Hints for Thin Deep Nets[EB/OL]. (2015-03-27)[2025-02-14]. https://arxiv.org/abs/1412.6550. |
| [27] | TIAN Yonglong, KRISHNAN D, ISOLA P. Contrastive Representation Distillation[EB/OL]. (2022-01-24)[2025-02-14]. https://arxiv.org/abs/1910.10699. |
| [28] | PARK W, KIM D, LU Yuan, et al. Relational Knowledge Distillation[C]// IEEE. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2019: 3962-3971. |
| [29] | ZHANG Duzhen, YU Yahan, CHEN Feilong, et al. Decomposing Logits Distillation for Incremental Named Entity Recognition[C]// ACM. 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 1919-1923. |
| [30] | XIE Luofeng, CEN Xuexiang, LU Houhong, et al. A Hierarchical Feature-Logit-Based Knowledge Distillation Scheme for Internal Defect Detection of Magnetic Tiles[EB/OL]. (2024-08-01)[2025-02-14]. https://dl.acm.org/doi/10.1016/j.aei.2024.102526. |
| [31] | SUN Jianwen, ZHANG Bin, LI Hongyu, et al. T-Sanitation: Contrastive Masked Auto-Encoder-Based Few-Shot Learning for Malicious Traffic Detection[EB/OL]. (2025-02-10)[2025-02-14]. https://doi.org/10.1007/s11227-025-07104-1. |
| [32] | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal Loss for Dense Object Detection[EB/OL]. (2017-08-07)[2025-02-14]. https://openaccess.thecvf.com/content_ICCV_2017/papers/Lin_Focal_Loss_for_ICCV_2017_paper.pdf. |
| [33] | SHARAFALDIN I, LASHKARI A H, GHORBANI A A. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization[C]// SciTePress. The 4th International Conference on Information Systems Security and Privacy. Setubal: SciTePress, 2018: 108-116. |
| [34] | WANG Wei, ZHU Ming, ZENG Xuewen, et al. Malware Traffic Classification Using Convolutional Neural Network for Representation Learning[C]// IEEE. 2017 International Conference on Information Networking (ICOIN). New York: IEEE, 2017: 712-717. |
| [35] | GIL G D, LASHKARI A H, MAMUN M, et al. Characterization of Encrypted and VPN Traffic Using Time-Related Features[C]// SciTePress. The 2nd International Conference on Information Systems Security and Privacy. Setubal: SciTePress, 2016: 407-414. |
| [36] | LIN Kunda, XU Xiaolong, GAO Honghao. TSCRNN: A Novel Classification Scheme of Encrypted Traffic Based on Flow Spatiotemporal Features for Efficient Management of IIoT[EB/OL]. (2021-03-16)[2025-02-14]. https://doi.org/10.1016/j.comnet.2021.107974. |
| [37] |
KARIM F, MAJUMDAR S, DARABI H, et al. Multivariate LSTM-FCNs for Time Series Classification[J]. Neural Networks, 2019, 116: 237-245.
doi: S0893-6080(19)30120-0 pmid: 31121421 |
| [38] | LIU Chang, HE Longtao, XIONG Gang, et al. FS-Net: A Flow Sequence Network for Encrypted Traffic Classification[C]// IEEE. IEEE INFOCOM 2019-IEEE Conference on Computer Communications. New York: IEEE, 2019: 1171-1179. |
| [39] | LOTFOLLAHI M, JAFARI-SIAVOSHANI M, SHIRALI-HOSSEIN-ZADE R, et al. Deep Packet: A Novel Approach for Encrypted Traffic Classification Using Deep Learning[J]. Soft Computing, 2020, 24(3): 1999-2012. |
| [1] | ZHU Shuaishuai, LIU Keqian. A Masking-Based Selective Federated Distillation Scheme [J]. Netinfo Security, 2025, 25(6): 920-932. |
| [2] | LI Xiao, SONG Xiao, LI Yong. Research on Differential Privacy Methods for Medical Diagnosis Based on Knowledge Distillation [J]. Netinfo Security, 2025, 25(4): 524-535. |
| [3] | GU Guomin, CHEN Wenhao, HUANG Weida. A Covert Tunnel and Encrypted Malicious Traffic Detection Method Based on Multi-Model Fusion [J]. Netinfo Security, 2024, 24(5): 694-708. |
| [4] | TU Xiaohan, ZHANG Chuanhao, LIU Mengran. Design and Implementation of Malicious Traffic Detection Model [J]. Netinfo Security, 2024, 24(4): 520-533. |
| [5] | CHEN Jing, ZHANG Jian. A Data-Free Personalized Federated Learning Algorithm Based on Knowledge Distillation [J]. Netinfo Security, 2024, 24(10): 1562-1569. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||