Netinfo Security ›› 2023, Vol. 23 ›› Issue (11): 69-83.doi: 10.3969/j.issn.1671-1122.2023.11.008
Previous Articles Next Articles
LIU Gaoyang1,2, WU Weiling1, ZHANG Jinsheng3, WANG Chen1,2()
Received:
2023-06-20
Online:
2023-11-10
Published:
2023-11-10
CLC Number:
LIU Gaoyang, WU Weiling, ZHANG Jinsheng, WANG Chen. Targeted Poisoning Attacks against Multimodal Contrastive Learning[J]. Netinfo Security, 2023, 23(11): 69-83.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2023.11.008
术语 | 符号 | 描述 |
---|---|---|
目标标签 | 攻击者指定的标签,在清洁标签投毒攻击中也叫做基类 | |
目标样本 | 攻击者指定的特定样本,包含图像和描述性文本 | |
源标签 | 目标样本对应的真实标签 | |
基类样本 | 从基类中选取的样本 | |
原样本 | 包含目标样本与其他所有干净样本 | |
原标签 | 原样本对应的真实标签 | |
投毒样本 | 攻击者精心构造的毒化样本 | |
干净数据集 | 未经投毒的数据集 | |
投毒数据集 | 包含所有的投毒样本和干净样本 | |
干净模型 | 攻击者的目标模型, | |
受害者模型 | 被攻击后的模型 |
数据集 | ASR | 攻击方式 | ||||
---|---|---|---|---|---|---|
Multi-Poisoning | Inter-polationCP | Image- Interp | TextAug | DE-Interp | ||
CIFAR-10 | 30% 50% 80% 90% 95% | 0.10% 0.20% 0.30% 0.50% 0.60% | 0.05% 0.10% 0.40% 0.80% 0.80% | 0.30% 0.50% 0.60% 0.65% 0.75% | 0.15% 0.20% 0.30% 0.45% 0.50% | 0.01% 0.02% 0.03% 0.05% 0.06% |
SVHN | 30% 50% 80% 90% 95% | 0.10% 0.30% 0.60% 0.75% 0.80% | 0.20% 0.50% 0.65% 0.80% 0.85% | 0.30% 0.50% 0.50% 0.60% 0.70% | 0.30% 0.50% 0.50% 0.60% 0.60% | 0.02% 0.03% 0.04% 0.05% 0.10% |
GTSRB | 30% 50% 80% 90% 95% | 0.15% 0.30% 0.35% 0.50% 0.50% | 0.20% 0.30% 0.35% 0.50% 0.70% | 0.10% 0.20% 0.25% 0.55% 0.55% | 0.10% 0.30% 0.30% 0.50% 0.60% | 0.02% 0.03% 0.08% 0.10% 0.10% |
[1] |
GU Xin, SHEN Yinghua, LYU Chaohui. A Dual-Path Cross-Modal Network for Video-Music Retrieval[J]. Sensors, 2023, 23(2): 805-818.
doi: 10.3390/s23020805 URL |
[2] | LUO Huaishao, JI Lei, SHI Botian, et al. Univl: A Unified Video and Language Pre-Training Model for Multimodal Understanding and Generation[EB/OL]. (2020-02-15)[2023-06-01]. https://api.semanticscholar.org/CorpusID:211132410. |
[3] | LU Jiasen, BATRA D, PARIKH D, et al. Vilbert: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks[J]. Advances in Neural Information Processing Systems, 2019, 2: 13-23. |
[4] | CARLINI N, TERZIS A. Poisoning and Backdooring Contrastive Learning[EB/OL]. (2021-06-17)[2023-06-01]. https://doi.org/10.48550/arXiv.2106.09667. |
[5] | JIA Jinyuan, LIU Yupei, GONG N Z. Badencoder: Backdoor Attacks to Pre-Trained Encoders in Self-Supervised Learning[C]// IEEE. IEEE Symposium on Security and Privacy. New York: IEEE, 2022: 2043-2059. |
[6] | HE Hao, ZHA Kaiwen, KATABI D. Indiscriminate Poisoning Attacks on Unsupervised Contrastive Learning[EB/OL]. (2022-02-22)[2023-06-01]. https://doi.org/10.48550/arXiv.2202.11202. |
[7] | CUBUK E D, ZOPH B, SHLENS J, et al. Randaugment: Practical Automated Data Augmentation with a Reduced Search Space[C]// IEEE. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE, 2020: 702-703. |
[8] | ZHONG Zhun, ZHENG Liang, KANG Guoliang, et al. Random Erasing Data Augmentation[C]// AAAI. AAAI Conference on Artificial Intelligence. NewYork: AAAI, 2020: 13001-13008. |
[9] | ZHANG Xinyang, ZHANG Zheng, JI Shuoling, et al. Trojaning Language Models for Fun and Profit[C]// IEEE. IEEE European Symposium on Security and Privacy. New York: IEEE, 2021: 179-197. |
[10] | DEVLIN J, CHANG M W, LEE K, et al. Bert: Pre-training of Deep Bidirectional Transformers for Language Understanding[EB/OL]. (2018-10-11)[2023-06-01]. https://doi.org/10.48550/arXiv.1810.04805. |
[11] | NELSON B, BARRENO M, CHI F J, et al. Exploiting Machine Learning to Subvert Your Spam Filter[J]. LEET, 2008, 7: 1-9. |
[12] | SHARMA P, DING Nan, GOODMAN S, et al. Conceptual Captions:A Cleaned, Hypernymed, Image Alt-Text Dataset for Automatic Image Captioning[C]// ACL. 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL Anthology, 2018: 2556-2565. |
[13] | THOMEE B, SHAMMA D A, FRIEDLAND G, et al. YFCC100M: The New Data in Multimedia Research[J]. Communications of the ACM, 2016, 59(2): 64-73. |
[14] |
RUSSAKOVSKY O, DENG Jia, SU Hao, et al. Imagenet Large Scale Visual Recognition Challenge[J]. International Journal of Computer Vision, 2015, 115: 211-252.
doi: 10.1007/s11263-015-0816-y URL |
[15] | PAUDICE A, MUÑOZ-GONZÁLEZ L, LUPU E C. Label Sanitization against Label Flipping Poisoning Attacks[C]// ECML. ECML PKDD 2018 Workshops. Berlin: Springer, 2019: 5-15. |
[16] | ZHANG Mengmei, HU Linmei, SHI Chuan, et al. Adversarial Label-Flipping Attack and Defense for Graph Neural Networks[C]// IEEE. IEEE International Conference on Data Mining. New York: IEEE, 2020: 791-800. |
[17] | HE Kaiming, FAN Haoqi, WU Yuxin, et al. Momentum Contrast for Unsupervised Visual Representation Learning[C]// IEEE. IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2020: 9729-9738. |
[18] | SOHN K. Improved Deep Metric Learning with Multi-Class N-Pair Loss Objective[J]. Advances in Neural Information Processing Systems, 2016, 29: 1857-1865. |
[19] | CHEN Ting, KORNBLITH S, NOROUZI M, et al. A Simple Framework for Contrastive Learning of Visual Representations[C]// ICML. International Conference on Machine Learning. Cambridge: MIT Press, 2020: 1597-1607. |
[20] | RADFORD A, KIM J W, HALLACY C, et al. Learning Transferable Visual Models from Natural Language Supervision[C]// ICML. International Conference on Machine Learning. Cambridge: MIT Press, 2021: 8748-8763. |
[21] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is All You Need[J]. Advances in Neural Information Processing Systems, 2017, 30: 6000-6010. |
[22] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep Residual Learning for Image Recognition[C]// IEEE. IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 770-778. |
[23] | LAMPERT C H, NICKISCH H, HARMELING S. Learning to Detect Unseen Object Classes by Between-Class Attribute Transfer[C]// IEEE. IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2009: 951-958. |
[24] | ZHU Chen, HUANG W R, LI Hengduo, et al. Transferable Clean-Label Poisoning Attacks on Deep Neural Nets[C]// ICML. International Conference on Machine Learning. Cambridge: MIT Press, 2019: 7614-7623. |
[25] | CHEN Jinyin, ZOU Jianfei, SU Mengmeng, et al. Review of Poisoning Attack and Defense in Deep Learning Models[J]. Journal of Cyber Security, 2020, 5(4): 14-29. |
[26] | WU Jianhan, SI Shijing, WANG Jianzong, et al. Review of Federation Learning Attack and Defense[J]. Big Data, 2022, 8(5): 12-32. |
吴建汉, 司世景, 王健宗, 等. 联邦学习攻击与防御综述[J]. 大数据, 2022, 8(5):12-32.
doi: 10.11959/j.issn.2096-0271.2022038 |
|
[27] | SHAFAHI A, HUANG W R, NAJIBI M, et al. Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks[J]. Advances in Neural Information Processing Systems, 2018, 31: 6106-6116. |
[28] | SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing Properties of Neural Networks[EB/OL]. (2013-12-21)[2023-06-01]. https://doi.org/10.48550/arXiv.1312.6199. |
[29] | GONG Yuan, LI Boyang, POELLABAUER C, et al. Real-Time Adversarial Attacks[EB/OL]. (2019-05-31)[2023-06-01]. https://doi.org/10.48550/arXiv.1905.13399. |
[30] | DOAN K D, LAO Yingjie, LI Ping. Marksman Backdoor: Backdoor Attacks with Arbitrary Target Class[EB/OL]. (2022-10-17)[2023-06-01]. https://arxiv.org/pdf/2210.09194.pdf. |
[31] | DU Wei, LIU Gongshen. Review of Backdoor Attacks in Deep Learning[J]. Journal of Cyber Security, 2022, 7(3): 1-16. |
[32] | CARLINI N. Poisoning the Unlabeled Dataset of Semi-Supervised Learning[EB/OL]. (2019-05-31)[2023-06-01]. https://doi.org/10.48550/arXiv.1905.13399. |
[33] | KRIZHEVSKY A. Learning Multiple Layers of Features from Tiny Images[EB/OL]. (2012-05-08)[2023-06-01]. https://www.researchgate.net/publication/265748773_Learning_Multiple_Layers_of_Features_from_Tiny_Images. |
[34] | COATES A, NG A, LEE H. An Analysis of Single-Layer Networks in Unsupervised Feature Learning[C]// ICML. 14th International Conference on Artificial Intelligence and Statistics. Cambridge: MIT Press, 2011: 215-223. |
[35] |
STALLKAMP J, SCHLIPSING M, SALMEN J, et al. Man vs. Computer: Benchmarking Machine Learning Algorithms for Traffic Sign Recognition[J]. Neural Networks, 2012, 32: 323-332.
doi: 10.1016/j.neunet.2012.02.016 pmid: 22394690 |
[36] | RUBINSTEIN B I P, NELSON B, HUANG Ling, et al. Antidote: Understanding and Defending Against Poisoning of Anomaly Detectors[C]// ACM. 9th ACM SIGCOMM Conference on Internet Measurement. New York: ACM, 2009: 1-14. |
[37] |
BARRENO M, NELSON B, JOSEPH A D, et al. The Security of Machine Learning[J]. Machine Learning, 2010, 81: 121-148.
doi: 10.1007/s10994-010-5188-5 URL |
[38] | BIGGIO B, CORONA I, FUMERA G, et al. Bagging Classifiers for Fighting Poisoning Attacks in Adversarial Classification Tasks[C]// MCS. Multiple Classifier Systems. Berlin:Springer, 2011: 350-359. |
[39] | MA Yuzhe, ZHU Xiaojin, HSU J. Data Poisoning Against Differentially-Private Learners: Attacks and Defenses[EB/OL]. (2019-05-23)[2023-06-01]. https://doi.org/10.48550/arXiv.1903.09860. |
[40] | ROSENFELD E, WINSTON E, RAVIKUMAR P, et al. Certified Robustness to Label-Flipping Attacks via Randomized Smoothing[C]// ICML. International Conference on Machine Learning. Cambridge: MIT Press, 2020: 8230-8241. |
[41] | PERI N, GUPTA N, HUANG W R, et al. Deep K-NN Defense Against Clean-Label Data Poisoning Attacks[EB/OL]. (2021-01-10)[2023-06-01]. https://link.springer.com/chapter/10.1007/978-3-030-66415-2_4. |
[42] |
CHEN Jian, ZHANG Xuxin, ZHANG Rui, et al. De-Pois: An Attack-Agnostic Defense Against Data Poisoning Attacks[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 3412-3425.
doi: 10.1109/TIFS.2021.3080522 URL |
[1] | YAO Yuan, FAN Zhaoshan, WANG Qing, TAO Yuan. Malicious Domain Detection Method Based on Multivariate Time-Series Features [J]. Netinfo Security, 2023, 23(11): 1-8. |
[2] | LI Sicong, WANG Jian, SONG Yafei, HUANG Wei. Malicious Code Classification Method Based on BiTCN-DLP [J]. Netinfo Security, 2023, 23(11): 104-117. |
[3] | HUAN Xintao, MIAO Kaitao, CHEN Wen, WU Changfan. A Robust Wireless Key Generation Method for IoT Devices Based on Autonomous Discarding and Calibration [J]. Netinfo Security, 2023, 23(11): 17-26. |
[4] | SUN Yongqi, SONG Zewen, ZHU Weiguo, ZHAO Sicong. Image Classification Method Based on Secure Multiparty Computation [J]. Netinfo Security, 2023, 23(11): 27-37. |
[5] | SONG Lihua, ZHANG Jinwei, ZHANG Shaoyong. An Adaptive IoT SSH Honeypot Strategy Based on Game Theory Opponent Modeling [J]. Netinfo Security, 2023, 23(11): 38-47. |
[6] | XU Shengwei, DENG Ye, LIU Changhe, TAN Li. A Selective Encryption Scheme for Audio and Video Based on the National Cryptographic Algorithm [J]. Netinfo Security, 2023, 23(11): 48-57. |
[7] | YAO Changhua, XU Hao, FU Shu, LIU Xin. Fast Multi-Agent Collaborative Exploration Algorithm Based on Boundary Point Filtering [J]. Netinfo Security, 2023, 23(11): 58-68. |
[8] | HUANG Kaijie, WANG Jian, CHEN Jiongyi. A Large Language Model Based SQL Injection Attack Detection Method [J]. Netinfo Security, 2023, 23(11): 84-93. |
[9] | CHEN Liquan, XUE Yuxin, JIANG Yinghua, ZHU Yaqing. Design of Certificate Transparency Log System Based on SM2 Algorithm [J]. Netinfo Security, 2023, 23(11): 9-16. |
[10] | LIAO Liyun, ZHANG Bolei, WU Lifa. IoT Anomaly Detection Model Based on Cost-Sensitive Learning [J]. Netinfo Security, 2023, 23(11): 94-103. |
[11] | WANG Zhi, ZHANG Hao, Jason GU. A Hybrid Method of Joint Entropy and Multiple Clustering Based DDoS Detection in SDN [J]. Netinfo Security, 2023, 23(10): 1-7. |
[12] | ZHANG Yuchen, LI Lianghui, MA Chenyang, ZHOU Hongwei. A Log Anomaly Detection Method with Variables [J]. Netinfo Security, 2023, 23(10): 16-20. |
[13] | TONG Xin, JIN Bo, WANG Binjun, ZHAI Hanming. A Malicious SMS Detection Method Blending Adversarial Enhancement and Multi-Task Optimization [J]. Netinfo Security, 2023, 23(10): 21-30. |
[14] | ZHU Yixin, MIAO Zhangwang, GAN Jinghong, MA Cunqing. Design of Ransomware Defense System Based on Fine-Grained Access Control Scheme [J]. Netinfo Security, 2023, 23(10): 31-38. |
[15] | ZHANG Lu, TU Chenyang, MIAO Zhangwang, GAN Jinghong. Design of an End-to-Cloud Trusted Transmission Solution for Location Information [J]. Netinfo Security, 2023, 23(10): 39-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||