Netinfo Security ›› 2023, Vol. 23 ›› Issue (11): 38-47.doi: 10.3969/j.issn.1671-1122.2023.11.005
Previous Articles Next Articles
SONG Lihua, ZHANG Jinwei(), ZHANG Shaoyong
Received:
2023-06-08
Online:
2023-11-10
Published:
2023-11-10
CLC Number:
SONG Lihua, ZHANG Jinwei, ZHANG Shaoyong. An Adaptive IoT SSH Honeypot Strategy Based on Game Theory Opponent Modeling[J]. Netinfo Security, 2023, 23(11): 38-47.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2023.11.005
符号 | 含义 |
---|---|
攻击者以先验概率 | |
在每轮博弈开始时,攻击者以 | |
当攻击者访问的系统是蜜罐时,执行high动作,被蜜罐捕获后所造成的损失 | |
当攻击者访问的系统是蜜罐时,执行low动作,被蜜罐捕获后所造成的损失 | |
当攻击者访问的系统是蜜罐时,执行test,蜜罐选择block时,攻击者所得到的收益 | |
当攻击者访问的系统是物联网生产系统时,攻击者执行high 动作成功时所得到的收益 | |
当攻击者访问的系统是物联网生产系统时,攻击者执行low 动作成功时所得到的收益 | |
攻击者选择test动作所需要的攻击成本 | |
攻击者选择high动作所需要的攻击成本 | |
攻击者选择low动作所需要的攻击成本 | |
攻击者以概率 | |
攻击者以概率 | |
攻击者以概率 | |
当攻击者选择test动作时,蜜罐系统执行allow动作需要付出的成本 | |
当攻击者选择high动作时,蜜罐系统执行allow动作需要付出的成本 | |
当攻击者选择low动作时,蜜罐系统执行allow动作需要付出的成本 | |
真实物联网生产系统允许执行命令的概率,本文为0.9 | |
攻击者的期望收益 | |
防御方的期望收益 |
[1] | SPITZNER L. Honeypots: Tracking Hackers[M]. Boston: Addison Wesley, 2003. |
[2] | LOGANADEN V, MARK D. Baushke. Increase the Secure Shell Minimum Recommended Diffie-Hellman Modulus Size to 2048 Bits[EB/OL]. (2017-12-01)[2023-05-30]. https://rfc-editor.org/rfc/rfc8270.txt. |
[3] | METONGNON L, SADRE R. Prevalence of IoT Protocols in Telescope and Honeypot Measurements[EB/OL]. (2019-04-04)[2023-05-30]. https://dl.acm.org/doi/pdf/10.1145/3229598.3229604. |
[4] | KRAWETZ N. Anti-Honeypot Technology[J]. IEEE Security & Privacy, 2004, 2(1): 76-79. |
[5] | PAWLICK J, COLBERT E, ZHU Quanyan. A Game-Theoretic Taxonomy and Survey of Defensive Deception for Cybersecurity and Privacy[J]. ACM Computing Surveys (CSUR), 2019, 52(4): 1-28. |
[6] |
JIANG Yangyang, SONG Lihua, XING Changyou, et al. Belief Driven Attack and Defense Policy Optimization Mechanism in Honeypot Game[J]. Computer Science, 2022, 49(9): 333-339.
doi: 10.11896/jsjkx.220400011 |
姜洋洋, 宋丽华, 邢长友, 等. 蜜罐博弈中信念驱动的攻防策略优化机制[J]. 计算机科学, 2022, 49(9): 333-339.
doi: 10.11896/jsjkx.220400011 |
|
[7] | KROER C, SANDHOLM T. Limited Lookahead in Imperfect-Information Games[EB/OL]. (2020-03-19)[2023-05-30]. https://arxiv.org/abs/1902.06335. |
[8] | WAGENER G, STATE R, ENGEL T, et al. Adaptive and Self-Configurable Honeypots[C]// IEEE. 12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops. New York: IEEE, 2011: 345-352. |
[9] | HAYATLE O, OTROK H, YOUSSEF A. A Game Theoretic Investigation for High Interaction Honeypots[C]// IEEE. 2012 IEEE International Conference on Communications (ICC). New York: IEEE, 2012: 6662-6667. |
[10] |
PAWLICK J, COLBERT E, ZHU Quanyan. Modeling and Analysis of Leaky Deception Using Signaling Games with Evidence[J]. IEEE Transactions on Information Forensics and Security, 2018, 14(7): 1871-1886.
doi: 10.1109/TIFS.10206 URL |
[11] | WANG Juan, YANG Hongyuan, FAN Chengyang. A SDN Dynamic Honeypot with Multi-Phase Attack Response[J]. Netinfo Security, 2021, 21(1): 27-40. |
王鹃, 杨泓远, 樊成阳. 一种基于多阶段攻击响应的SDN动态蜜罐[J]. 信息网络安全, 2021, 21(1): 27-40. | |
[12] | PANDA S, RASS S, MOSCHOYIANNIS S, et al. HoneyCar: A Framework to Configure Honeypot Vulnerabilities on the Internet of Vehicles[J]. IEEE Access, 2022(10): 104671-104685. |
[13] | WAGENER G, STATE R, DULAUNOY A, et al. Heliza: Talking Dirty to the Attackers[J]. Journal in Computer Virology, 2011(7): 221-232. |
[14] | PAUNA A, BICA I. RASSH-Reinforced Adaptive SSH Honeypot[C]// IEEE. 2014 10th International Conference on Communications (COMM). New York: IEEE, 2014: 1-6. |
[15] | PAUNA A, IACOB A, BICA I. A Self-Adaptive SSH Honeypot Driven by Q-Learning[C]// IEEE. International Conference on Communications. New York: IEEE, 2018: 417-422. |
[16] | PAUNA A, BICA I, POP F, et al. On the Rewards of Self-Adaptive IoT Honeypots[J]. Annals of Telecommunications, 2019(74): 501-515. |
[17] | TOUCH S, COLIN J N. A Comparison of an Adaptive Self-Guarded Honeypot with Conventional Honeypots[EB/OL]. (2022-05-19)[2023-05-30]. https://doi.org/10.3390/app12105224. |
[18] | LOPEZ Y J S, FAGETTE A. Increasing Attacker Engagement on SSH Honeypots Using Semantic Embeddings of Cyber-Attack Patterns and Deep Reinforcement Learning[C]// IEEE. 2022 IEEE Symposium Series on Computational Intelligence (SSCI). New York: IEEE, 2022: 389-395. |
[19] | SUTTON R S. On the Significance of Markov Decision Processes[C]// Springer. Artificial Neural Networks-ICANN’97: 7th International Conference Lausanne. Berlin: Springer, 1997: 273-282. |
[20] | HAARNOJA T, ZHOU A, HARTIKAINEN K, et al. Soft Actor-Critic Algorithms and Applications[EB/OL]. (2018-12-13)[2023-05-30]. https://arxiv.org/abs/1812.05905. |
[21] | HESSEL M, MODAYIL J, HASSELT H V, et al. Rainbow: Combining Improvements in Deep Reinforcement Learning[EB/OL]. (2017-10-06)[2023-05-30]. https://arxiv.org/abs/1710.02298. |
[1] | ZHANG Wei, LI Zixuan, XU Xiaoyu, HUANG Haiping. SDP-CoAP: Design of Security Enhanced CoAP Communication Framework Based on Software Defined Perimeter [J]. Netinfo Security, 2023, 23(8): 17-31. |
[2] | LI Zhihua, WANG Zhihao. IoT Device Identification Method Based on LCNN and LSTM Hybrid Structure [J]. Netinfo Security, 2023, 23(6): 43-54. |
[3] | HUAN Xintao, MIAO Kaitao, CHEN Wen, WU Changfan. A Robust Wireless Key Generation Method for IoT Devices Based on Autonomous Discarding and Calibration [J]. Netinfo Security, 2023, 23(11): 17-26. |
[4] | LIAO Liyun, ZHANG Bolei, WU Lifa. IoT Anomaly Detection Model Based on Cost-Sensitive Learning [J]. Netinfo Security, 2023, 23(11): 94-103. |
[5] | LIU Xiangyu, LU Tianliang, DU Yanhui, WANG Jingxiang. Lightweight IoT Intrusion Detection Method Based on Feature Selection [J]. Netinfo Security, 2023, 23(1): 66-72. |
[6] | ZHANG Xuewang, LIU Yufan. Identity Traceable Anonymous Authentication Scheme for Nodes in the Perception Layer of IoT [J]. Netinfo Security, 2022, 22(9): 55-62. |
[7] | ZHAO Hong, LI Shan, ZUO Peiliang, WEI Zhanzhen. Security Resource Allocation Method for Internet of Things Based on Reinforcement Learning [J]. Netinfo Security, 2022, 22(6): 44-52. |
[8] | YU Kechen, GUO Li, YIN Hongwei, YAN Xuesong. The High-Value Data Sharing Model Based on Blockchain and Game Theory for Data Centers [J]. Netinfo Security, 2022, 22(6): 73-85. |
[9] | HAN Li, SONG Jixiang, SUN Shimin. Moving Target Defense Mechanism Research Based on Device Address in SD-IoT [J]. Netinfo Security, 2022, 22(11): 36-46. |
[10] | LI Tong, REN Shuai, WANG Gang, MENG Qingyu. Cloud-edge-device Collaborative Integrity Verification Scheme Based on Chameleon Authentication Tree for Streaming Data [J]. Netinfo Security, 2022, 22(1): 37-45. |
[11] | CHEN Qinggang, DU Yanhui, HAN Yi, LIU Xiangyu. IoT Device Recognition Model Based on Depthwise Separable Convolution [J]. Netinfo Security, 2021, 21(9): 67-73. |
[12] | WU Kehe, CHENG Rui, ZHENG Bihuang, CUI Wenchao. Research on Security Communication Protocol of Power Internet of Things [J]. Netinfo Security, 2021, 21(9): 8-15. |
[13] | LI Qun, DONG Jiahan, GUAN Zhitao, WANG Chao. A Clustering and Classification-based Malicious Attack Detection Method for Internet of Things [J]. Netinfo Security, 2021, 21(8): 82-90. |
[14] | LIU Xin, GUO Zhenbin, SONG Yuchen. An Authentication Scheme Based on SGX for Industrial Internet of Things [J]. Netinfo Security, 2021, 21(6): 1-10. |
[15] | LIU Jing*, ZHANG Yuchen, ZHANG Hongqi. Automatic Intrusion Response Decision-making Method Based on Q-Learning [J]. Netinfo Security, 2021, 21(6): 26-35. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||