Netinfo Security ›› 2023, Vol. 23 ›› Issue (11): 104-117.doi: 10.3969/j.issn.1671-1122.2023.11.011
Previous Articles Next Articles
LI Sicong1,2, WANG Jian1, SONG Yafei1(), HUANG Wei1,2
Received:
2023-08-25
Online:
2023-11-10
Published:
2023-11-10
CLC Number:
LI Sicong, WANG Jian, SONG Yafei, HUANG Wei. Malicious Code Classification Method Based on BiTCN-DLP[J]. Netinfo Security, 2023, 23(11): 104-117.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2023.11.011
模型 | 特征 | Accuracy | Precision | Recall | F1 | 参数量/M | 检测 时间/ms |
---|---|---|---|---|---|---|---|
One-class SVM[ | Opcode+ 灰度图 | 74.40 % | — | — | — | — | — |
文献[ | CFG+DGCNN | 94.40 % | 94.18 % | 93.68 % | 93.93 % | — | — |
PCA and KNN[ | 灰度图 | 96.60 % | — | — | — | — | — |
文献[ | Mcs-ResNet | 97.21 % | 96.55 % | 96.24 % | 96.39 % | — | 150.75 |
文献[ | 灰度图 | 97.49 % | — | — | 94.00 % | — | — |
文献[ | A-GCN | 98.03 % | — | — | 93.80 % | — | — |
Strand Gene Sequence[ | .asm序列 | 98.53 % | 97.42 % | — | — | — | 28.91 |
RSGC[ | Opcode+ 灰度图 | 98.90 % | — | — | — | — | — |
MCSC[ | 灰度图 | 98.86 % | — | — | 98.07 % | — | — |
ID-CNN-IMIR[ | 灰度图 | 98.94 % | — | — | — | — | — |
TI-MVD[ | SCC-GRU | 99.10 % | 97.50 % | 98.65 % | — | — | — |
Orthrus[ | 字节+ Opcode | 99.26 % | 98.86 % | — | 90.67 % | — | — |
BiTCN-SA[ | Opcode+ 灰度图 | 99.75 % | 99.69 % | 99.66 % | 99.63 % | 12.64 | 20.92 |
BiTCN-DLP | Opcode+ 灰度图 | 99.54 % | 99.61 % | 99.42 % | 99.49 % | 3.86 | 4.34 |
[1] | Internet Development Research. The 51st Statistical Report on the Development of the Internet in China[EB/OL]. (2023-03-02)[2023-07-10]. https://www.cnnic.cn/n4/2023/0302/c199-10755.html. |
互联网发展研究. 《中国互联网络发展状况统计报告》[EB/OL]. (2023- 03-02)[2023-07-10]. https://www.cnnic.cn/n4/2023/0302/c199-10755.html. | |
[2] | Kaspersky Security Network. IT Threat Evolution in Q3 2021[EB/OL]. (2022-05-27)[2023-07-10]. https://securelist.com/it-threat-evolution-in-q1-2022-mobile-statistics/10658. |
[3] |
KIM S, YEOM S, OH H, et al. Automatic Malicious Code Classification System through Static Analysis Using Machine Learning[J]. Symmetry, 2020, 13(1): 35-45.
doi: 10.3390/sym13010035 URL |
[4] | NATARAJ L, KARTHIKEYAN S, JACOB G, et al. Malware Images: Visualization and Automatic Classification[C]// ACM. Proceedings of the 8th International Symposium on Visualization for Cyber Security. New York: ACM, 2011: 1-7. |
[5] |
CUI Zhihua, DU Lei, WANG Penghong, et al. Malicious Code Detection Based on CNNs and Multi-Objective Algorithm[J]. Journal of Parallel and Distributed Computing, 2019, 129: 50-58.
doi: 10.1016/j.jpdc.2019.03.010 |
[6] | GAYATHRI S, GOPI V P, PALANISAMY P. A Lightweight CNN for Diabetic Retinopathy Classification from Fundus Images[EB/OL]. (2020-08-11)[2023-07-10]. https://doi.org/10.1016/j.bspc.2020.102115. |
[7] | REZENDE E, RUPPERT G, CARVALHO T, et al. Malicious Software Classification Using VGG16 Deep Neural Network’s Bottleneck Features[C]// Latifi, Shahram. Information Technology-New Generations:15th International Conference on Information Technology. Berlin:Springer International Publishing, 2018: 51-59. |
[8] | XU Mingdi, TONG Hui, JIN Chaoyang, et al. Malicious Code Detection Method Based on Multiple Features[C]// IEEE. 2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE). New York: IEEE, 2021: 8-15. |
[9] | ZHAO Yuntao, XU Chunyu, BO Bo, et al. Maldeep: A Deep Learning Classification Framework against Malware Variants Based on Texture Visualization[J]. Security and Communication Networks, 2019, 2019(8): 1-11. |
[10] |
DAMODARAN A, TROIA F D, VISAGGIO C A, et al. A Comparison of Static, Dynamic, and Hybrid Analysis for Malware Detection[J]. Journal of Computer Virology and Hacking Techniques, 2017, 13: 1-12.
doi: 10.1007/s11416-015-0261-z URL |
[11] | VENKATRAMAN S, ALAZAB M. Use of Data Visualisation for Zero-Day Malware Detection[J]. Security and Communication Networks, 2018, 2018: 1-13. |
[12] |
ALAZAB M. Profiling and Classifying the Behavior of Malicious Codes[J]. Journal of Systems and Software, 2015, 100: 91-102.
doi: 10.1016/j.jss.2014.10.031 URL |
[13] | SEBASTIO S, BARANOV E, BIONDI F, et al. Optimizing Symbolic Execution for Malware Behavior Classification[EB/OL]. (2020-03-12)[2023-07-10]. https://doi.org/10.1016/j.cose.2020.101775. |
[14] | WANG Kun, SONG Tao, LIANG Alei. Mmda: Metadata Based Malware Detection on Android[C]// IEEE. 2016 12th International Conference on Computational Intelligence and Security (CIS). New York: IEEE, 2016: 598-602. |
[15] |
VENKATRAMAN S, ALAZAB M, VINAYAKUMAR R. A Hybrid Deep Learning Image-Based Analysis for Effective Malware Detection[J]. Journal of Information Security and Applications, 2019, 47: 377-389.
doi: 10.1016/j.jisa.2019.06.006 URL |
[16] | ABOU-ASSALEH T, CERCONE N, KESELJ V, et al. N-gram-Based Detection of New Malicious Code[C]// IEEE. Proceedings of the 28th Annual International Computer Software and Applications Conference(COMPSAC). New York: IEEE, 2004: 41-42. |
[17] | MOSKOVITCH R, FEHER C, TZACHAR N, et al. Unknown Malcode Detection Using Opcode Representation[C]// Springer.European Conference on Intelligence and Security Informatics. Heidelberg: Springer, 2008: 204-215. |
[18] |
SANTOS I, BREZO F, UGARTE-PEDRERO X, et al. Opcode Sequences as Representation of Executables for Data-Mining-Based Unknown Malware Detection[J]. Information Sciences, 2013, 231: 64-82.
doi: 10.1016/j.ins.2011.08.020 URL |
[19] | KANG B J, YERIMA S Y, MCLAUGHLIN K, et al. N-Opcode Analysis for Android Malware Classification and Categorization[C]// IEEE.2016 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). New York: IEEE, 2016: 1-7. |
[20] |
NATARAJ L, MANJUNATH B S. Spam: Signal Processing to Analyze Malware[Applications Corner][J]. IEEE Signal Processing Magazine, 2016, 33(2): 105-117.
doi: 10.1109/MSP.2015.2507185 |
[21] | JIANG Ruilin, QIN Renchao. Multi-Neural Network Malicious Code Detection Model Based on Depth-Separable Convolution[J]. Computer Applications, 2023, 43(5): 1527-1533. |
蒋瑞林, 覃仁超. 基于深度可分离卷积的多神经网络恶意代码检测模型[J]. 计算机应用, 2023, 43(5):1527-1533.
doi: 10.11772/j.issn.1001-9081.2022050716 |
|
[22] | WEI Lizhuo, SHI Chunzhu, XU Fengkai, et al. Static Detection Technique of Malicious Code Based on Feature Sequences[J]. Network Security and Data Governance, 2022, 41(10): 56-64. |
魏利卓, 石春竹, 许凤凯, 等. 基于特征序列的恶意代码静态检测技术[J]. 网络安全与数据治理, 2022, 41(10):56-64. | |
[23] | LIU Zixuan, WANG Chen. BiLSTM Malicious Code Classification Based on Multi-Feature Fusion[J]. Electronic Design Engineering, 2022, 30(18): 67-72. |
刘紫煊, 王晨. 基于多特征融合的BiLSTM恶意代码分类[J]. 电子设计工程, 2022, 30(18):67-72. | |
[24] | WANG Degang, SUN Yi, ZHOU Chuanxin, et al. A Model Similarity-Based Approach for Model Malicious Code Entrapment Detection[J]. Journal of Network and Information Security, 2023, 9(4): 90-103. |
汪德刚, 孙奕, 周传鑫, 等. 基于模型相似度的模型恶意代码夹带检测方法[J]. 网络与信息安全学报, 2023, 9(4):90-103. | |
[25] | LIU Chen, LI Bo, ZHAO Jun, et al. TI-MVD: A Temporal Interaction-Enhanced Model for Malware Variants Detection[EB/OL]. (2023-08-18)[2023-08-20]. https://doi.org/10.1016/j.knosys.2023.110850. |
[26] | BU S J, CHO S B. Malware Classification with Disentangled Representation Learning of Evolutionary Triplet Network[EB/OL]. (2023-07-01)[2023-08-20]. https://api.semanticscholar.org/CorpusID:259645678. |
[27] | BAI Shaojie, KOLTER J Z, KOLTUN V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling[EB/OL]. (2018-04-19)[2023-07-10]. https://doi.org/10.48550/arXiv.1803.01271. |
[28] |
ZHAO Wentian, GAO Yanyun, JI Tingxiang, et al. Deep Temporal Convolutional Networks for Short-Term Traffic Flow Forecasting[J]. IEEE Access, 2019, 7: 114496-114507.
doi: 10.1109/ACCESS.2019.2935504 |
[29] |
BAI Jinrong, WANG Junfeng. Improving Malware Detection Using Multi-View Ensemble Learning[J]. Security and Communication Networks, 2016, 9(17): 4227-4241.
doi: 10.1002/sec.v9.17 URL |
[30] |
WANG Shuo, WANG Jian, WANG Yanan, et al. A Fast Detection Method for Malicious Code Based on Feature Fusion[J]. Journal of Electronics, 2023, 51(1): 57-66.
doi: 10.1080/00207218108901299 URL |
王硕, 王坚, 王亚男, 等. 一种基于特征融合的恶意代码快速检测方法[J]. 电子学报, 2023, 51(1):57-66.
doi: 10.12263/DZXB.20211701 |
|
[31] |
FAN Yuying, LI Chengjuan, YI Qiang, et al. Classification of Field Moving Targets Based on Improved TCN Network[J]. Computer Engineering, 2021, 47: 106-112.
doi: 10.19678/j.issn.1000-3428.0058750 |
[32] |
Hewage P, Behera A, Trovati M, et al. Temporal Convolutional Neural (TCN) Network for an Effective Weather Forecasting Using Time-Series Data from the Local Weather Station[J]. Soft Computing, 2020, 24: 16453-16482.
doi: 10.1007/s00500-020-04954-0 |
[33] | KOCHER G, KUMAR G. Analysis of Machine Learning Algorithms with Feature Selection for Intrusion Detection Using UNSW-NB15 Dataset[J]. International Journal of Network Security & Its Applications, 2021, 13(1): 21-31. |
[34] | D’HOOGE L, WAUTERS T, VOLCKAERT B, et al. Inter-Dataset Generalization Strength of Supervised Machine Learning Methods for Intrusion Detection[EB/OL]. (2020-06-15)[2023-07-10]. https://doi.org/10.1016/j.jisa.2020.102564. |
[35] | WANG Shuo, WANG Jian, SONG Yafei, et al. Malware Variants Detection Model Based on MFF-HDBA[EB/OL]. (2022-09-24)[2023-07-10]. https://doi.org/10.3390/app12199593. |
[36] | BIG 2015, Microsoft Malware Protection Center, Microsoft Azure Machine Learning, et al. Kaggle BIG 2015 Dataset[EB/OL]. (2019-03-28) [2023-07-10]. https://www.kaggle.com/c/malware-classification. |
[37] | ANANDHI V, VINOD P, MENON V G. Malware Visualization and Detection Using DenseNets[EB/OL]. (2021-07-01)[2023-07-20]. https://doi.org/10.1007/s00779-021-01581-w. |
[38] | HAMAD N, ULLAH F, NAEEM M, et al. Malware Detection in Industrial Internet of Things Based on Hybrid Image Visualization and Deep Learning Model[EB/OL]. (2020-08-01)[2023-07-20]. https://doi.org/10.1016/j.adhoc.2020.102154. |
[39] |
XIAO Guoqing, LI Jingning, CHEN Yuedan, et al. MalFCS: An Effective Malware Classification Framework with Automated Feature Extraction Based on Deep Convolutional Neural Networks[J]. Journal of Parallel and Distributed Computing, 2020, 141: 49-58.
doi: 10.1016/j.jpdc.2020.03.012 URL |
[40] | KINGMA D P, BA J. Adam: A Method for Stochastic Optimization[EB/OL]. (2017-01-30)[2023-07-10]. https://arxiv.org/abs/1412.6980. |
[41] | BURNAEV E, SMOLYAKOV D. One-Class SVM with Privileged Information and Its Application to Malware Detection[C]// IEEE. 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW). New York: IEEE, 2016: 273-280. |
[42] | YAN Jiaqi, YAN Guanhua, JIN Dong. Classifying Malware Represented as Control Flow Graphs Using Deep Graph Convolutional Neural Network[C]// IEEE.2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). New York: IEEE, 2019: 52-63. |
[43] | NARAYANAN B N, DJANEYE-BOUNDJOU O, KEBEDE T M. Performance Analysis of Machine Learning and Pattern Recognition Algorithms for Malware Classification[C]// IEEE.2016 IEEE National Aerospace and Electronics Conference (NAECON) and Ohio Innovation Summit (OIS). New York: IEEE, 2016: 338-342. |
[44] | SHAO Yanli, LU Yang, WEI Dan, et al. Malicious Code Classification Method Based on Deep Residual Network and Hybrid Attention Mechanism for Edge Security[EB/OL]. (2022-07-07)[2023-07-20]. https://doi.org/10.1155/2022/3301718. |
[45] |
GIBERT D, MATEU C, PLANES J, et al. Using Convolutional Neural Networks for Classification of Malware Represented as Images[J]. Journal of Computer Virology and Hacking Techniques, 2019, 15: 15-28.
doi: 10.1007/s11416-018-0323-0 |
[46] | LU Yang. Research on the Classification Method of Malicious Code Variants Based on Deep Neural Network[D]. Hangzhou: Hangzhou University of Electronic Science and Technology, 2022. |
陆洋. 基于深度神经网络的恶意代码变种分类方法研究[D]. 杭州: 杭州电子科技大学, 2022. | |
[47] |
DREW J, HAHSLER M, MOORE T. Polymorphic Malware Detection Using Sequence Classifcation Methods and Ensembles[J]. EURASIP Journal on Information Security, 2017, 2017(1): 1-12.
doi: 10.1186/s13635-016-0053-0 URL |
[48] |
CHEN Xiaohan, WEI Shuning, QIN Zhengze. Malware Family Classification Based on Deep Learning Visualization[J]. Computer Engineering and Applications, 2021, 57(22): 131-138.
doi: 10.3778/j.issn.1002-8331.2007-0291 |
陈小寒, 魏书宁, 覃正泽. 基于深度学习可视化的恶意软件家族分类[J]. 计算机工程与应用, 2021, 57(22):131-138.
doi: 10.3778/j.issn.1002-8331.2007-0291 |
|
[49] |
NI Sang, QIAN Quan, ZHANG Rui. Malware Identification Using Visualization Images and Deep Learning[J]. Computers & Security, 2018, 77: 871-885.
doi: 10.1016/j.cose.2018.04.005 URL |
[50] | WANG Dong, YANG Ke, XUAN Jiaxing, et al. A Multi-Classification Method for Malicious Code Families Based on One-Dimensional Convolutional Neural Networks[J]. Computer Applications and Software, 2021, 38(12): 332-340. |
王栋, 杨珂, 玄佳兴, 等. 基于一维卷积神经网络的恶意代码家族多分类方法研究[J]. 计算机应用与软件, 2021, 38(12):332-340. | |
[51] | GIBERT D, MATEU C, PLANES J. Orthrus: A Bimodal Learning Architecture for Malware Classification[C]// IEEE. 2020 International Joint Conference on Neural Networks (IJCNN). New York: IEEE, 2020: 1-8. |
[52] | HUANG Wei, WANG Jian, WU Xuan, et al. Malicious Code Classification Method Based on BiTCNSA[J]. Journal of Air Force Engineering University, 2023, 24(4): 77-84. |
黄玮, 王坚, 吴暄, 等. 基于 BiTCNSA 的恶意代码分类方法[J]. 空军工程大学学报, 2023, 24(4):77-84. |
[1] | YAO Yuan, FAN Zhaoshan, WANG Qing, TAO Yuan. Malicious Domain Detection Method Based on Multivariate Time-Series Features [J]. Netinfo Security, 2023, 23(11): 1-8. |
[2] | LIU Guangjie, DUAN Kun, ZHAI Jiangtao, QIN Jiayu. Mobile Traffic Application Recognition Based on Multi-Feature Fusion [J]. Netinfo Security, 2022, 22(7): 18-26. |
[3] | LIN Wei. Detection of Abnormal Transactions in Blockchain Based on Multi Feature Fusion [J]. Netinfo Security, 2022, 22(10): 24-30. |
[4] | PAN Xiaoqin, DU Yanhui. Forged Voice Identification Method Based on Feature Fusion and Multi-channel GRU [J]. Netinfo Security, 2021, 21(10): 1-7. |
[5] | ZHU Chaoyang, ZHOU Liang, ZHU Yayun, LIN Qingwen. Malicious Code Visual Classification Algorithm Based on Behavior Knowledge Graph Sieve [J]. Netinfo Security, 2021, 21(10): 54-62. |
[6] | TAN Ruhan, ZUO Liming, LIU Ergen, GUO Li. Malicious Code Detection Based on Image Feature Fusion [J]. Netinfo Security, 2021, 21(10): 90-95. |
[7] | GU Zhaojun, HAO Jintao, ZHOU Jingxian. Classification of Malicious Network Traffic Based on Improved Bilinear Convolutional Neural Network [J]. Netinfo Security, 2020, 20(10): 67-74. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||