[1] |
JI Tiantian, FANG Binxing, CUI Xiang, et al. Research Progress of Deep Learning Enabled Attack and Defense of Malicious Code[J]. Chinese Journal of Computers, 2021, 44(4):669-695.
|
|
冀甜甜, 方滨兴, 崔翔, 等. 深度学习赋能的恶意代码攻防研究进展[J]. 计算机学报, 2021, 44(4):669-695.
|
[2] |
REN Zhuojun, CHEN Guang, LU Wenke. Research on Visualization Method of Malware Opcode[EB/OL]. http://kns.cnki.net/kcms/detail/11.2127.TP.20201126.0907.002.html, 2021-06-20.
|
|
任卓君, 陈光, 卢文科. 恶意软件的操作码可视化方法研究[EB/OL]. http://kns.cnki.net/kcms/detail/11.2127.TP.20201126.0907.002.html, 2021-06-20.
|
[3] |
HE Tong, ZHANG Zhi, ZHANG Hang, et al. Bag of Tricks for Image Classification with Convolutional Neural Networks [C]//IEEE. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 15-20, 2019, Long Beach, CA, USA. New York: IEEE, 2019: 558-567.
|
[4] |
TAN Yang, LIU Jiayong, ZHANG Lei. Malware Family Classification of Deep Self Encoder Based on Mixed Features[J]. Information Network Security, 2020, 20(12):72-82.
|
|
谭杨, 刘嘉勇, 张磊. 基于混合特征的深度自编码器的恶意软件家族分类[J]. 信息网络安全, 2020, 20(12):72-82.
|
[5] |
LIU Yashu, WANG Zhihai, HOU Yueran, et al. Visualization and Automatic Classification of Malicious Code with Enhanced Information Density[J]. Journal of Tsinghua University (Natural Science Edition), 2019, 59(1):9-14.
|
|
刘亚姝, 王志海, 侯跃然, 等. 信息密度增强的恶意代码可视化与自动分类方法[J]. 清华大学学报(自然科学版), 2019, 59(1):9-14.
|
[6] |
ZENG Yaqin, ZHANG Linlin, ZHANG Ruonan, et al. Classification Model of Malware Family Based on Mobile Net[J]. Computer Engineering, 2020, 46(4):162-168.
|
|
曾娅琴, 张琳琳, 张若楠, 等. 基于MobileNet的恶意软件家族分类模型[J]. 计算机工程, 2020, 46(4):162-168.
|
[7] |
RAMAN K. Selecting Features to Classify Malware[EB/OL]. https://2012.infosecsouthwest.com/files/speaker_materials/ISSW2012_Selecting_Features_to_Classify_Malware.pdf, 2021-06-01.
|
[8] |
KIM C H, KABANGA E K, KANG S J. Classifying Malware Using Convolutional Gated Neural Network [C]//ICACT. 2018 20th International Conference on Advanced Communication Technology (ICACT), February 11-14, 2018, Chuncheon, Korea (South). New York: IEEE, 2018: 40-44.
|
[9] |
MA Xin, GUO Shize, LI Haiying, et al. How to Make Attention Mechanisms More Practical in Malware Classification[J]. IEEE Access, 2019, 7(10):155270-155280.
doi: 10.1109/Access.6287639
URL
|
[10] |
SHABTAI A, MOSKOVITCH R, FEHER C, et al. Detecting Unknown Malicious Code by Applying Classification Techniques on Opcode Patterns[J]. Security Informatics, 2012, 1(1):1-22.
doi: 10.1186/2190-8532-1-1
URL
|
[11] |
SUN Guosong, QIAN Quan. Deep Learning and Visualization for Identifying Malware Families[J]. IEEE Transactions on Dependable and Secure Computing, 2021, 18(1):283-295.
doi: 10.1109/TDSC.8858
URL
|
[12] |
ANDERSON B, QUIST D, NEIL J, et al. Graph-based Malware Detection Using Dynamic Analysis[J]. Journal in Computer Virology, 2011, 7(4):247-258.
doi: 10.1007/s11416-011-0152-x
URL
|
[13] |
KOLOSNJAJI B, DEMONTIS A, BIGGIO B, et al. Adversarial Malware Binaries: Evading Deep Learning for Malware Detection in Executables [C]//IEEE. 2018 26th European Signal Processing Conference (EUSIPCO), September 3-7, 2018, Rome, Italy. Italy: IEEE, 2018: 533-537.
|
[14] |
LIU Weijie, ZHOU Peng, ZHAO Zhe, et al. K-bert: Enabling Language Representation with Knowledge Graph[EB/OL]. https://ojs.aaai.org/index.php/AAAI/article/view/5681, 2021-06-01.
|
[15] |
KANG B J, YERIMA S Y, SEZER S, et al. N-gram Opcode Analysis for Android Malware Detection[EB/OL].https://arxiv.org/abs/1612.01445, 2021-06-01.
|
[16] |
LUO J S, LO D C T. Binary Malware Image Classification Using Machine Learning with Local Binary Pattern [C]//IEEE. 2017 IEEE International Conference on Big Data (Big Data). December 11-14, 2017, Boston, MA, USA. New York: IEEE, 2017: 4664-4667.
|
[17] |
NATARAJ L, KARTHIKEYAN S, JACOB G, et al. Malware Images: Visualization and Automatic Classification [C]//ACM. Proceedings of the 8th International Symposium on Visualization for Cyber Security (VizSec ’11), July 20, 2011, New York, USA. USA: Association for Computing Machinery, 2011: 1-7.
|
[18] |
LU Xidong, DUAN Zhemin, QIAN yekui, et al. A Malicious Code Classification Method Based on Deep Forest[J]. Journal of Software, 2020, 31(5):1454-1464.
|
|
卢喜东, 段哲民, 钱叶魁, 等. 一种基于深度森林的恶意代码分类方法[J]. 软件学报, 2020, 31(5):1454-1464.
|