Netinfo Security ›› 2024, Vol. 24 ›› Issue (12): 1896-1910.doi: 10.3969/j.issn.1671-1122.2024.12.008
Previous Articles Next Articles
LI Yixuan1, JIA Peng1(), FAN Ximing1, CHEN Chen2
Received:
2024-07-09
Online:
2024-12-10
Published:
2025-01-10
CLC Number:
LI Yixuan, JIA Peng, FAN Ximing, CHEN Chen. Control Flow Transformation Based Adversarial Example Generation for Attacking Malware Detection GNN Model[J]. Netinfo Security, 2024, 24(12): 1896-1910.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2024.12.008
序号 | 指令内容 |
---|---|
1 | nop |
2 | subq |
3 | addq |
4 | leaq (%rax),%rax |
5 | movq %rax,%rax |
6 | xchgq %rax,%rax |
7 | pushfq pushq %rax xorl %eax,%eax cmovol %ecx,%eax popq %rax popfq |
8 | pushfq pushq %rax xorl %eax,%eax cmovpl %eax,%eax popq %rax popfq |
9 | pushfq cmpq %rax,%rax cmovb %eax,%eax popfq |
10 | pushfq cmpq %rax,%rax cmovg %ecx,%eax popfq |
11 | pushfq cmpq %rax,%rax cmovs %ecx,%eax popfq |
12 | pushfq cmpq %rax,%rax cmovl %ecx,%eax popfq |
13 | pushfq cmpq %rax,%rax cmovns %eax,%eax popfq |
14 | pushfq pushq %rax xorl %eax,%eax cmovnp %ecx,%eax popq %rax popfq |
15 | pushfq cmpq %rax,%rax cmovno %ecx,%eax popfq |
16 | addq |
17 | subq |
18 | pushq %rax negq %rax negq %rax popq %rax |
19 | notq %rax notq %rax |
20 | pushq %rax popq %rax |
21 | pushfq popfq |
22 | xchgq %rax,%rcx xchgq %rcx,%rax |
23 | pushq %rax notq %rax popq %rax |
24 | xorq %rbx,%rax xorq %rax,%rbx xorq %rax,%rbx xorq %rbx,%rax |
25 | pushq %rbx movq %rax,%rbx addq |
26 | pushq %rax incq %rax decq %rax decq %rax popq %rax |
27 | pushq %rbx movq %rax,%rbx cmpq %rax,%rax setg %al movzbq %al,%rax movq %rbx,%rax popq %rbx |
行号 | 文件内容 |
---|---|
1 | [FunctionName-1@1,0] |
2 | FunctionName-1#BasicBlock-1&8: +1+3 |
3 | FunctionName-1#BasicBlock-2&7: +1 |
4 | FunctionName-1#BasicBlock-3&1: +12+4 |
5 | FunctionName-1#BasicBlock-4&10: +1 |
6 | FunctionName-1#BasicBlock-5&4: +1 |
7 | [FunctionName-2@0,30] |
8 | FunctionName-2#BasicBlock-1&3: +1 |
9 | FunctionName-2#BasicBlock-2&9: +1 |
10 | FunctionName-2#BasicBlock-3&3: +1+15 |
11 | FunctionName-2#BasicBlock-4&6: +1 |
12 | FunctionName-2#BasicBlock-5&2: +1 |
Iteration | DGCNN_9 | DGCNN_20 | GIN0_9 | GIN0_20 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
IRAttack | SRLAttack | IRAttack | SRLAttack | IRAttack | SRLAttack | IRAttack | SRLAttack | ||||
10 | 14.56 (+8.56) | 6.00 | 87.58 (+52.25) | 35.33 | 86.94 (+67.67) | 19.27 | 65.31 (+14.13) | 51.18 | |||
20 | 34.69 (+26.55) | 8.14 | 94.86 (+43.9) | 50.96 | 95.29 (+74.09) | 21.20 | 86.08 (+1.5) | 84.58 | |||
30 | 46.04 (+37.26) | 8.78 | 95.07 (+36.4) | 58.67 | 97.43 (+76.02) | 21.41 | 92.93 (+3.42) | 89.51 | |||
40 | 47.97 (+38.12) | 9.85 | 96.79 (+31.27) | 65.52 | 97.64 (+76.01) | 21.63 | 93.79 (+2.72) | 91.07 | |||
50 | 55.46 (+44.11) | 11.35 | 97.64 (+28.90) | 68.74 | 98.07 (+76.44) | 21.63 | 97.00 (+5.57) | 91.43 | |||
60 | 52.68 (+39.4) | 13.28 | 97.64 (+26.55) | 71.09 | 98.29 (+76.66) | 21.63 | 96.57 (+5.14) | 91.43 | |||
Iteration | GIN0WithJK_9 | GIN0WithJK_20 | Average | ||||||||
IRAttack | SRLAttack | IRAttack | SRLAttack | IRAttack | SRLAttack | ||||||
10 | 91.22 (+76.66) | 14.56 | 37.04 (+25.26) | 11.78 | 56.09 (+33.07) | 23.02 | |||||
20 | 97.22 (+82.02) | 15.20 | 62.96 (+49.26) | 13.70 | 70.16 (+37.86) | 32.30 | |||||
30 | 98.07 (+82.87) | 15.20 | 75.80 (+61.45) | 14.35 | 76.48 (+41.82) | 34.65 | |||||
40 | 98.07 (+82.87) | 15.20 | 80.30 (+65.95) | 14.35 | 79.22 (+42.95) | 36.27 | |||||
50 | 98.29 (+83.09) | 15.20 | 85.44 (+71.09) | 14.35 | 83.13 (+46.01) | 37.12 | |||||
60 | 98.29 (+83.09) | 15.20 | 86.30 (+71.74) | 14.56 | 84.25 (+46.39) | 37.87 |
Iteration | DGCNN_9 | DGCNN_20 | GIN0_9 | GIN0_20 | ||||
---|---|---|---|---|---|---|---|---|
IRAttack | IMalerAttack | IRAttack | IMalerAttack | IRAttack | IMalerAttack | IRAttack | IMalerAttack | |
10 | 14.56 (+10.92) | 3.64 | 87.58 (+78.37) | 9.21 | 86.94 (+82.66) | 4.28 | 65.31 (+54.39) | 10.92 |
20 | 34.69 (+29.34) | 5.35 | 94.86 (+80.3) | 14.56 | 95.29 (+89.29) | 6.00 | 86.08 (+65.95) | 20.13 |
30 | 46.04 (+39.83) | 6.21 | 95.07 (+77.08) | 17.99 | 97.43 (+90.79) | 6.64 | 92.93 (+66.16) | 26.77 |
40 | 47.97 (+41.76) | 6.21 | 96.79 (+78.16) | 18.63 | 97.64 (+89.5) | 8.14 | 93.79 (+64.03) | 29.76 |
50 | 55.46 (+47.32) | 8.14 | 97.64 (+74.51) | 23.13 | 98.07 (+90.15) | 7.92 | 97.00 (+63.6) | 33.40 |
60 | 52.68 (+44.54) | 8.14 | 97.64 (+71.47) | 26.17 | 98.29 (+90.37) | 7.92 | 96.57 (+57.38) | 39.19 |
Iteration | GIN0WithJK_9 | GIN0WithJK_20 | Average | |||||
IRAttack | IMalerAttack | IRAttack | IMalerAttack | IRAttack | IMalerAttack | |||
10 | 91.22 (+84.37) | 6.85 | 37.04 (+28.05) | 8.99 | 56.09 (+48.78) | 7.32 | ||
20 | 97.22 (+86.51) | 10.71 | 62.96 (+51.18) | 11.78 | 70.16 (+58.74) | 11.42 | ||
30 | 98.07 (+83.29) | 14.78 | 75.80 (+57.6) | 18.20 | 76.48 (+61.38) | 15.10 | ||
40 | 98.07 (+83.94) | 14.13 | 80.30 (+56.75) | 23.55 | 79.22 (+62.49) | 16.74 | ||
50 | 98.29 (+78.59) | 19.70 | 85.44 (+57.17) | 28.27 | 83.13 (+63.04) | 20.09 | ||
60 | 98.29 (+77.52) | 20.77 | 86.30 (+59.11) | 27.19 | 84.25 (+62.69) | 21.56 |
Iteration | DGCNN_9 | DGCNN_20 | GIN0_9 | GIN0_20 | GIN0-WithJK_9 | GIN0-WithJK_20 | Average |
---|---|---|---|---|---|---|---|
10 | 66.99 | 56.43 | 68.40 | 92.58 | 54.45 | 82.36 | 70.20 |
20 | 122.86 | 68.18 | 81.21 | 120.88 | 67.14 | 122.52 | 97.13 |
30 | 172.17 | 64.86 | 93.25 | 132.45 | 67.44 | 180.04 | 118.37 |
40 | 258.97 | 60.48 | 80.76 | 122.92 | 59.41 | 171.79 | 125.72 |
50 | 272.23 | 66.11 | 82.44 | 109.14 | 60.31 | 206.63 | 132.81 |
60 | 207.17 | 57.21 | 73.37 | 107.26 | 57.42 | 223.84 | 121.05 |
[1] | PEI Xinjun, YU Long, TIAN Shengwei. AMalNet: A Deep Learning Framework Based on Graph Convolutional Networks for Malware Detection[EB/OL]. (2020-07-01)[2024-05-09]. https://www.sciencedirect.com/science/article/abs/pii/S0167404820300778. |
[2] | YAN Jiaqi, YAN Guanhua, JIN Dong. Classifying Malware Represented as Control Flow Graphs Using Deep Graph Convolutional Neural Network[C]// IEEE. 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). New York: IEEE, 2019: 52-63. |
[3] | KARGARNOVIN O, SADEGHZADEH A M, JALILI R. Mal2GCN: A Robust Malware Detection Approach Using Deep Graph Convolutional Networks with Non-Negative Weights[J]. Journal of Computer Virology and Hacking Techniques, 2024, 20(1): 95-111. |
[4] | LING Xiang, WU Lingfei, DENG Wei, et al. Malgraph: Hierarchical Graph Neural Networks for Robust Windows Malware Detection[C]// IEEE. INFOCOM 2022-IEEE Conference on Computer Communications. New York: IEEE, 2022: 1998-2007. |
[5] | WU Bolun, XU Yuanhang, ZOU Futai. Malware Classification by Learning Semantic and Structural Features of Control Flow Graphs[C]// IEEE. 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). New York: IEEE, 2021: 540-547. |
[6] | CHEN Yihsien, LIN Sichen, HUANG Suchun, et al. Guided Malware Sample Analysis Based on Graph Neural Networks[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 4128-4143. |
[7] | DING Yuxin, ZHOU Zihan, QIAN Wen. A Malware Family Classification Method Based on the Point Cloud Model DGCNN[C]// Springer. Network and System Security:15th International Conference. Heidelberg: Springer, 2021: 210-221. |
[8] | ZHANG Zikai, LI Yidong, WANG Wei, et al. Malware Detection with Dynamic Evolving Graph Convolutional Networks[J]. International Journal of Intelligent Systems, 2022, 37(10): 7261-7280. |
[9] | ZHANG Lan, LIU Peng, CHOI Y H, et al. Semantics-Preserving Reinforcement Learning Attack against Graph Neural Networks for Malware Detection[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 20(2): 1390-1402. |
[10] | CHEN Yanhui, FENG Yun, WANG Zhi, et al. IMaler: an Adversarial Attack Framework to Obfuscate Malware Structure against DGCNN-Based Classifier via Reinforcement Learning[C]// IEEE. ICC 2023-IEEE International Conference on Communications. New York: IEEE, 2023: 790-796. |
[11] | JUNOD P, RINALDINI J, WEHRLI J, et al. Obfuscator-LLVM: Software Protection for the Masses[C]// IEEE. 2015 IEEE/ACM 1st International Workshop on Software Protection. New York: IEEE, 2015: 3-9. |
[12] | FEY M, LENSSEN J E. Fast Graph Representation Learning with PyTorch Geometric[EB/OL]. (2019-03-06)[2024-06-10]. https://arxiv.org/pdf/1903.02428. |
[13] | BIlOT T, EL M N, AL AK, et al. A Survey on Malware Detection with Graph Representation Learning[J]. ACM Computing Surveys, 2024, 56(11): 1-36. |
[14] | XU Zhiwu, REN Kerong, QIN Shengchao, et al. CDGDroid: Android Malware Detection Based on Deep Learning Using CFG and DFG[C]// Springer. Formal Methods and Software Engineering:20th International Conference on Formal Engineering Methods. Heidelberg: Springer, 2018: 177-193. |
[15] | ANDERSON H S, KHARKAR A, FILAR B, et al. Learning to Evade Static PE Machine Learning Malware Models via Reinforcement Learning[EB/OL]. (2018-01-26)[2024-05-12]. https://arxiv.org/pdf/1801.08917. |
[16] | LIU Yuying, YANG Pin, JIA Peng, et al. MalFuzz: Coverage-Guided Fuzzing on Deep Learning-Based Malware Classification Model[EB/OL]. (2022-09-15)[2024-05-09]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0273804. |
[17] | ZHAN Dazhi, DUAN Yexin, HU Yue, et al. MalPatch: Evading DNN-Based Malware Detection With Adversarial Patches[C]// IEEE. Transactions on Information Forensics and Security. New York: IEEE, 2023: 1183-1198. |
[18] | LUCAS K, SHARIF M, BAUER L, et al. Malware Makeover: Breaking ML-Based Static Analysis by Modifying Executable Bytes[C]// ACM. Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security. New York: ACM, 2021: 744-758. |
[19] | ZUGNER D, BORCHERT O, AKBARNEJAD A, et al. Adversarial Attacks on Graph Neural Networks: Perturbations and Their Patterns[J]. Transactions on Knowledge Discovery from Data, 2020, 14(5): 1-31. |
[20] | PAPPAS V, POLYCHRONAKIS M, KEROMYTIS A D. Smashing the Gadgets: Hindering Return-Oriented Programming Using In-place Code Randomization[C]// IEEE. 2012 IEEE Symposium on Security and Privacy. New York: IEEE, 2012: 601-615. |
[21] | CHEN Yue, WANG Zhi, WHALLEY D, et al. Remix: On-Demand Live Randomization[C]// ACM. Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy. New York: ACM, 2016: 50-61. |
[22] | GIBERT D, FREDRIKSON M, MATEU C, et al. Enhancing the Insertion of NOP Instructions to Obfuscate Malware via Deep Reinforcement Learning[EB/OL]. (2022-01-01)[2024-05-09]. https://dl.acm.org/doi/10.1016/j.cose.2021.102543. |
[23] | BALACHANDRAN V, KEONG N W, EMMANUEL S. Function Level Control Flow Obfuscation for Software Security[C]// IEEE. 2014 the Eighth International Conference on Complex, Intelligent and Software Intensive Systems. New York: IEEE, 2014: 133-140. |
[24] | BERNAT A R, MILLER B P. Structured Binary Editing with A CFG Transformation Algebra[C]// IEEE. 2012 the 19th Working Conference on Reverse Engineering. New York: IEEE, 2012: 9-18. |
[25] | DUCK G J, GAO X, ROYCHOUDHURY A. Binary Rewriting without Control Flow Recovery[C]// ACM. Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation. New York: ACM, 2020: 151-163. |
[26] | GIUFFRIDA C, KUIJSTEN A, TANENBAUM A S. Enhanced Operating System Security Through Efficient and Fine-Grained Address Space Randomization[C]// USENIX. 21st USENIX Security Symposium (USENIX Security 12). New York: USENIX, 2012: 475-490. |
[27] | SRNDIC N, LASKOV P. Practical Evasion of a Learning-Based Classifier: A Case Study[C]// IEEE. 2014 IEEE Symposium on Security and Privacy. New York: IEEE, 2014: 197-211. |
[28] | KREUK F, BARAK A, AVIV-REUVEN S, et al. Deceiving End-to-End Deep Learning Malware Detectors using Adversarial Examples[EB/OL]. (2018-02-13)[2024-05-09]. https://arxiv.org/pdf/1802.04528. |
[29] | CRANE S, LIEBCHEN C, HOMESCU A, et al. Readactor: Practical Code Randomization Resilient to Memory Disclosure[C]// IEEE. 2015 IEEE Symposium on Security and Privacy. New York: IEEE, 2015: 763-780. |
[30] | WILLIAMS-KING D, GOBIESKI G, WILLIAMS-KING K, et al. Shuffler: Fast and Deployable Continuous Code Re-Randomization[C]// USENIX. 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). New York: USENIX, 2016: 367-382. |
[31] | KOO H, POLYCHRONAKIS M. Juggling the Gadgets: Binary-Level Code Randomization Using Instruction Displacement[C]// ACM. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. New York: ACM, 2016: 23-34. |
[32] | CARLINI N, ATHALYE A, PAPERNOT N, et al. On Evaluating Adversarial Robustness[EB/OL]. (2019-02-18)[2024-05-09]. https://arxiv.org/pdf/1902.06705. |
[33] | GITHUB. Toy LLVM Obfuscator Pass[EB/OL]. (2021-11-25)[2024-05-09]. https://github.com/veritas501/ToyObfuscator/tree/master. |
[34] | TSINGHUA. Index of Tsinghua Open Source Mirror[EB/OL]. (2015-01-01)[2024-04-13]. https://mirrors.tuna.tsinghua.edu.cn/gnu/coreutils. |
[35] | ROKON M, ISLAM R, DARKI A, et al. SourceFinder: Finding Malware Source-Code from Publicly Available Repositories in GitHub[C]// USENIX. 23rd International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2020). New York: USENIX, 2020: 149-163. |
[36] | GITHUB. MalwareSamples/Linux-Malware-Samples: Linux Malware Sample Archive Including Various Types of Malicious ELF Binaries and Viruses[EB/OL]. (2021-01-01)[2024-05-09]. https://github.com/MalwareSamples/Linux-Malware-Samples. |
[37] | GITHUB. A Collection of Well Labeled ELF Binaries Compiled from Benign and Malicious Code in Various Ways[EB/OL]. (2021-03-26)[2024-05-11]. https://github.com/nimrodpar/Labeled-Elfs. |
[38] | XU Keyulu, HU Weihua, LESKOVEC J, et al. How Powerful are Graph Neural Networks[EB/OL]. (2018-10-01)[2024-05-09]. https://arxiv.org/pdf/1810.00826. |
[39] | XU Keyulu, LI Chengtao, TIAN Yonglong, et al. Representation Learning on Graphs with Jumping Knowledge Networks[EB/OL]. (2018-07-09)[2024-05-09]. https://arxiv.org/pdf/1806.03536. |
[40] | DOCKER. Docker Image | Docker Hub[EB/OL]. (2022-11-25)[2024-05-30]. https://hub.docker.com/r/hacrot3000/docker-wine-ida. |
[1] | CHEN Xiaojing, TAO Yang, WU Baiqi, DIAO Yunfeng. Optimization Gradient Perception Adversarial Attack for Skeleton-Based Action Recognition [J]. Netinfo Security, 2024, 24(9): 1386-1395. |
[2] | XU Ruzhi, ZHANG Ning, LI Min, LI Zixuan. Research on a High Robust Detection Model for Malicious Software [J]. Netinfo Security, 2024, 24(8): 1184-1195. |
[3] | QI Han, WANG Jingtong, ABDULLAH Gani, GONG Changqing. Robustness of Variational Quantum Convolutional Neural Networks Based on Random Quantum Layers [J]. Netinfo Security, 2024, 24(3): 363-373. |
[4] | LU Xiaofeng, CHENG Tianze, LONG Chengnian. A Random Walk Based Black-Box Adversarial Attack against Graph Neural Network [J]. Netinfo Security, 2024, 24(10): 1570-1577. |
[5] | XU Ke, LI Jiayi, JIANG Xinghao, SUN Tanfeng. A Video Gait Privacy Protection Algorithm Based on Sparse Adversarial Attack on Silhouette [J]. Netinfo Security, 2024, 24(1): 48-59. |
[6] | WANG Yu, LYU Liangshuang, XIA Chunhe. A Windows Malware Detection Method Based on Semantic Analysis [J]. Netinfo Security, 2023, 23(10): 58-63. |
[7] | ZHENG Yaohao, WANG Liming, YANG Jing. A Defense Method against Adversarial Attacks Based on Neural Architecture Search [J]. Netinfo Security, 2022, 22(3): 70-77. |
[8] | XU Guotian, LIU Mengmeng. Malware Detection Method Based on Improved Harris Hawks Optimization Synchronization Optimization Feature Selection [J]. Netinfo Security, 2021, 21(12): 9-18. |
[9] | WANG Wenhua, HAO Xin, LIU Yan, WANG Yang. The Safety Evaluation and Defense Reinforcement of the AI System [J]. Netinfo Security, 2020, 20(9): 87-91. |
[10] | XU Guotian, SHEN Yaotong. A Malware Detection Method Based on XGBoost and LightGBM Two-layer Model [J]. Netinfo Security, 2020, 20(12): 54-63. |
[11] | Xin SONG, Kai ZHAO, Linlin ZHANG, Wenbo FANG. Research on Android Malware Detection Based on Random Forest [J]. Netinfo Security, 2019, 19(9): 1-5. |
[12] | Jian ZHANG, Bohan CHEN, Liangyi GONG, Zhaojun GU. Research on Malware Detection Technology Based on Image Analysis [J]. Netinfo Security, 2019, 19(10): 24-31. |
[13] | Yunchun LI, Wentao LU, Wei LI. Malware Detection Method Based on Shapelet [J]. Netinfo Security, 2018, 18(3): 70-77. |
[14] | Shifeng HUANG, Yajun GUO, Jianqun CUI, Qingjiang ZENG. Mobile Malware Detection Based on Optimized Fuzzy C-Means [J]. Netinfo Security, 2016, 16(1): 45-50. |
[15] | Yaqian SHU, Anmin FU, Zhentao HUANG. Design and Implementation of a Malware Detection System for Mobile Payment on the Cloud [J]. Netinfo Security, 2016, 16(1): 59-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||