Netinfo Security ›› 2019, Vol. 19 ›› Issue (10): 24-31.doi: 10.3969/j.issn.1671-1122.2019.10.004
Previous Articles Next Articles
Jian ZHANG1,2,3(), Bohan CHEN1, Liangyi GONG1, Zhaojun GU4
Received:
2019-06-15
Online:
2019-10-10
Published:
2020-05-11
Contact:
Jian ZHANG
E-mail:jeffersonzj@qq.com
CLC Number:
Jian ZHANG, Bohan CHEN, Liangyi GONG, Zhaojun GU. Research on Malware Detection Technology Based on Image Analysis[J]. Netinfo Security, 2019, 19(10): 24-31.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2019.10.004
文献 | 图像转化源 (均来自恶意软件) | 转换方法 | 图像类型 | 特征选择 | ||
---|---|---|---|---|---|---|
直接 | 操作码 | 灰度 | RGB | |||
文献[ | 二进制文件 | √ | √ | 使用GIST纹理特征 | ||
文献[ | 二进制文件 | √ | √ | 使用GIST纹理特征 | ||
文献[ | 可执行文件 | √ | √ | 基于强度、基于小波和基于Gabor的特征 | ||
文献[ | 操作码序列 | √ | √ | 通过动态过分析选出基本块(虑重),从基本块选出主要块 | ||
文献[ | 可执行文件 | √ | √ | 使用GLCM纹理特征,纹理分割 | ||
文献[ | PE文件 | √ | √ | 为适应各种哈希算法调整图像尺寸 | ||
文献[ | PE文件 | √ | √ | 图像特征和其他多个特征进行特征融合 | ||
文献[ | DEX文件 | √ | √ | 使用GIST纹理特征 | ||
文献[ | 操作码序列 | √ | √ | 使用直方图归一化,扩张和侵蚀处理恶意软件图像 | ||
文献[ | AndroidManifest.xml DEX文件 | √ | √ | 将两个文件转化后的图像进行拼接 | ||
文献[ | PE文件 | √ | √ | 图像的颜色特征和纹理特征 | ||
文献[ | 操作码序列 | √ | √ | 使用多哈希提升图像质量,进行主要块选择 | ||
文献[ | classes.dex、函数调用关系 | √ | √ | 对图像进行归一化处理 | ||
文献[ | 操作码序列 | √ | √ | 使用PE文件.text段操作码序列转化图像,使用GIST纹理特征 |
文献 | 时间 | 数据集来源 | 算法 | 精确度/% |
---|---|---|---|---|
文献[ | 2011.7 | Anubis Analysis System | KNN | 99.93 |
文献[ | 2011.9 | VX-Heavens | KNN | 97.57 |
文献[ | 2013.4 | Offensive Computing Database | SVM | 95.95 |
文献[ | 2016.3 | Microsoft Released | XGBoost | 99.76 |
文献[ | 2016.6 | Drebin数据集 | RF | >90 |
文献[ | 2018.2 | 未说明来源 | RF、KNN、SVM | 97.47、96.23、95.23 |
文献[ | 2018.6 | MalGenome | KNN | 94.49 |
文献[ | 2019.1 | 安天实验室 | KNN、RF | 94.199、93.511 |
[1] | 360 Internet Security Center. 2018 China Internet Security Report[EB/OL]. , 2019-5-30. |
360互联网安全中心. 2018年中国互联网安全报告[EB/OL]. , 2019-5-30. | |
[2] | QING Sihan.Research Progress on Android Security[J]. Journal of Software, 2016, 27(1): 45-71. |
卿斯汉. Android安全研究进展[J]. 软件学报,2016,27(1):45-71. | |
[3] | YE Yanfang, LI Tao, ADJEROH D, et al.A Survey on Malware Detection Using Data Mining Techniques[J]. ACM Computing Surveys, 2017, 50(3): 1-40. |
[4] | WANG Chiheng, CHEN Jing, CHEN Xiangyun, et al.An Android Ransomware Detection Scheme Based on Evidence Chain Generation[J]. Chinese Journal of Computers, 2018, 41(10): 2344-2358. |
王持恒,陈晶,陈祥云,等. 基于证据链生成的Android勒索软件检测方法[J]. 计算机学报,2018,41(10):2344-2358. | |
[5] | UCCI D, ANIELLO L, BALDONI R. Survey of Machine Learning Techniques for Malware Analysis[EB/OL]. , 2019-2-11. |
[6] | YANG Yimin, CHEN Tieming. Android Malware Family Classification Method Based on the Image of Byte Code Construction of MDS Matrices[EB/OL]. , 2019-2-11. |
杨益敏,陈铁明.一种基于字节码图像聚类的Android恶意代码家族分类方法[EB/OL]. ,2019-2-11. | |
[7] | XIA Xiaoling.Research on Android Malware Detection Method Based on Image and Text Feature with Deep Learning[D]. Harbin: Harbin Institute of Technology, 2018. |
夏晓玲. 基于深度学习的恶意代码图像及文本特征分类方法研究[D].哈尔滨:哈尔滨工业大学,2018. | |
[8] | LI Yuanyuan.Detection of Malware Software Based on Data Visualization[D]. Xi’an: Xidian University, 2018. |
李媛媛. 基于数据可视化的恶意代码检测[D].西安:西安电子科技大学,2018. | |
[9] | NATARAJ L, KARTHIKEYAN S, JACOB G, et al.Malware Images: Visualization and Automatic Classification[C]//ACM. 8th International Symposium on Visualization for Cyber Security, July 20, 2011, Pittsburgh, Pennsylvania, USA. New York: ACM, 2011: 4-11. |
[10] | FU Jianwen, XUE Jingfeng, WANG Yong, et al. Malware Visualization for Fine-grained Classification[EB/OL]. , 2018-2-12. |
[11] | ZHANG Jixin, QIN Zheng, YIN Hui, et al.IRMD: Malware Variant Detection Using Opcode Image Recognition[C]//IEEE. 22nd International Conference on Parallel and Distributed Systems, December 13-16, 2016, Wu Han, China. New Jersey: IEEE, 2016: 1175-1180. |
[12] | HAN K S, KANG B J, IM E G. Malware Analysis Using Visualized Image Matrices[EB/OL]. , 2019-2-12. |
[13] | NATARAJ L, YEGNESWARAN V, PORRAS P, et al.A Comparative Assessment of Malware Classification Using Binary Texture Analysis and Dynamic Analysis[C]//ACM. 4th ACM Workshop on Security and Artificial Intelligence, October 21, 2011, Chicago, Illinois, USA. New York: ACM, 2011: 21-30. |
[14] | KANCHERLA K, MUKKAMALA S.Image Visualization Based Malware Detection[C]//IEEE. 2013 IEEE Symposium on Computational Intelligence in Cyber Security, April 16-19, 2013, Singapore. New Jersey: IEEE, 2013: 40-44. |
[15] | HAN Xiaoguang, QU Wu, YAO Xuanxia, et al.Research on Malicious Code Variants Detection Based on Texture Fingerprint[J]. Journal on Communications, 2014, 35(8): 125-136. |
韩晓光,曲武,姚宣霞,等.基于纹理指纹的恶意代码变种检测方法研究[J].通信学报,2014,35(8):125-136. | |
[16] | AREFKHANI M, SORYANI M.Malware Clustering Using Image Processing Hashes[C]//IEEE. 9th Iranian Conference on Machine Vision and Image Processing, Noveber 18-19, 2015, Tehran, Iran. New Jersey: IEEE, 2015: 214-218. |
[17] | AHMADI M, ULYANOV D, SEMENOV S, et al.Novel Feature Extraction, Selection and Fusion for Effective Malware Family Classification[C]//ACM. 6th ACM Conference on Data and Application Security and Privacy, March 9-11, 2016, New Orleans, Louisiana, USA. New York: ACM, 2016: 183-194. |
[18] | NI Sang, QIAN Quan, ZHANG Rui. Malware Identification Using Visualization Images and Deep Learning[EB/OL]. https://www.sciencedirect.com/science/article/pii/S0167404818303481, 2019-2-14. |
[19] | LIU Yashu, WANG Zhihai, HOU Yueran, et al.Malware Visualization and Automatic Classification with Enhanced Information Density[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(1): 9-14. |
刘亚姝,王志海,侯跃然,等.信息密度增强的恶意代码可视化与自动分类方法[J].清华大学学报:自然科学版,2019,59(1):11-16. | |
[20] | GAO Chengcheng, HUI Xiaowei.GLCM-Based Texture Feature Extraction[J]. Computer Systems Applications, 2010, 19(6): 195-198. |
高程程,惠晓威.基于灰度共生矩阵的纹理特征提取[J].计算机系统应用,2010,19(6):195-198. | |
[21] | ZHANG Chenbin, ZHANG Yunchun, ZHENG Yang, et al.Malware Classification Based on Texture Fingerprint of Gray-scale Images[J]. Computer Science, 2018, 45( Z1): 383-386. |
张晨斌,张云春,郑杨,等.基于灰度图纹理指纹的恶意软件分类[J].计算机科学,2018,45(Z1):383-386. | |
[22] | LIU Li, KUANG Gangyao.Overview of Image Textural Feature Extraction Methods[J]. Journal of Image and Graphics, 2009, 14(4): 622-635. |
刘丽,匡纲要.图像纹理特征提取方法综述[J].中国图象图形学报,2009,14(4):622-635. | |
[23] | RANDEN T, HUSOY J H.Filtering for Texture Classification: a Comparative Study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(4): 291-310. |
[24] | OLIVA A, TORRALBA A.Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope[J]. International Journal of Computer Vision, 2001, 42(3): 145-175. |
[25] | TORRALBA A, MURPHY K P, FREEMAN W T, et al.Context-based Vision System for Place and Object Recognition[C]//IEEE. 9th IEEE International Conference on Computer Vision, October 13-16, 2003, Nice, France. New Jersey: IEEE, 2003: 273. |
[1] | Jianwei LIU, Yiran HAN, Bin LIU, Beiyuan YU. Research on 5G Network Slicing Security Model [J]. Netinfo Security, 2020, 20(4): 1-11. |
[2] | Chun GUO, Changqing CHEN, Guowei SHEN, Chaohui JIANG. A Ransomware Classification Method Based on Visualization [J]. Netinfo Security, 2020, 20(4): 31-39. |
[3] | Yifeng DU, Yuanbo GUO. A Dynamic Access Control Method for Fog Computing Based on Trust Value [J]. Netinfo Security, 2020, 20(4): 65-72. |
[4] | SONG Xin, ZHAO Kai, ZHANG Linlin, FANG Wenbo. Research on Android Malware Detection Based on Random Forest [J]. Netinfo Security, 2019, 19(9): 1-5. |
[5] | MA Zewen, LIU Yang, XU Hongping, YI Hang. DoS Traffic Identification Technology Based on Integrated Learning [J]. Netinfo Security, 2019, 19(9): 115-119. |
[6] | CHEN Liangchen, LIU Baoxu, GAO Shu. Research on Traffic Data Sampling Technology in Network Attack Detection [J]. Netinfo Security, 2019, 19(8): 22-28. |
[7] | CHEN Guanheng, SU Jinshu. Abnormal Traffic Detection Algorithm Based on Deep Neural Network [J]. Netinfo Security, 2019, 19(6): 68-75. |
[8] | TIAN Chunqi, LI Jing, WANG Wei, ZHANG Liqing. A Method for Improving the Performance of Spark on Container Cluster Based on Machine Learning [J]. 信息网络安全, 2019, 19(4): 11-19. |
[9] | NI Yitao, CHEN Yongjia, LIN Bogang. Automatic De-obfuscation-based Malicious Webpages Detection [J]. 信息网络安全, 2019, 19(4): 37-46. |
[10] | CHEN Liangchen, GAO Shu, LIU Baoxu, LU Zhigang. Research Status and Development Trends on Network Encrypted Traffic Identification [J]. 信息网络安全, 2019, 19(3): 19-25. |
[11] | HU Jianwei, ZHAO Wei, YAN Zheng, ZHANG Rui. Analysis and Implementation of SQL Injection Vulnerability Mining Technology Based on Machine Learning [J]. Netinfo Security, 2019, 19(11): 36-42. |
[12] | Weiping WEN, Jingwei LI, Yingnan JIAO, Hailin LI. A Vulnerability Detection Method Based on Random Detection Algorithm and Information Aggregation [J]. Netinfo Security, 2019, 19(1): 1-7. |
[13] | YU Yingchao, DING Lin, CHEN Zuoning. Research on Attacks and Defenses towards Machine Learning Systems [J]. 信息网络安全, 2018, 18(9): 10-18. |
[14] | ZHANG Yang, YAO Yuangang. Research on Network Intrusion Detection Based on Xgboost [J]. 信息网络安全, 2018, 18(9): 102-105. |
[15] | WEN Weiping, WU Bozhi, JIAO Yingnan, HE Yongqiang. Design and Implementation on Malicious Documents Detection Tool Based on Machine Learning [J]. 信息网络安全, 2018, 18(8): 1-7. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||