[1] |
YING Zhitao, HE Ruining, CHEN Kaifeng, et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems[C]// ACM. Proceedings of the 24th ACM SIGKDD Cnternational Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 974-983.
|
[2] |
LI Cheng, MA Jiaqi, GUO Qiaozhu, et al. Deepcas: An End-to-End Predictor of Information Cascades[C]// ACM. Proceedings of the 26th International Conference on World Wide Web. New York: ACM, 2017: 577-586.
|
[3] |
WEBER M, DOMENICONI G, CHEN Jie, et al. Anti-Money Laundering in Bitcoin: Experimenting with Graph Convolutional Networks for Financial Forensics[EB/OL]. (2019-07-31)[2024-04-10]. https://arxiv.org/pdf/1908.02591.
|
[4] |
ZUGNER D, AKBARNEJAD A, GUNNEMANN S. Adversarial Attacks on Neural Networks for Graph Data[C]// ACM. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 2847-2856.
|
[5] |
SUN Lichao, DOU Yingtong, YANG C, et al. Adversarial Attack and Defense on Graph Data: A Survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 35(8): 7693-7711.
|
[6] |
MAHMOOD K, MAHMOOD R, RATHBUN E, et al. Back in Black: A Comparative Evaluation of Recent State-of-the-Art Black-Box Attacks[J]. IEEE Access, 2021, 10: 998-1019.
|
[7] |
ZUGNER D, GUNNEMANN S. Adversarial Attacks on Graph Neural Networks via Meta Learning[EB/OL]. (2024-01-28)[2024-04-10]. https://arxiv.org/pdf/1902.08412.
|
[8] |
DAI Hanjun, LI Hui, TIAN T, et al. Adversarial Attack on Graph Structured Data[C]// IEEE. International Conference on Machine Learning. New York: IEEE, 2018: 1115-1124.
|
[9] |
MA Yao, WANG Suhang, DERR T, et al. Attacking Graph Convolutional Networks via Rewiring[EB/OL]. (2019-09-28)[2024-04-10]. https://arxiv.org/pdf/1906.03750.
|
[10] |
CHANG Heng, RONG Yu, XU Tingyang, et al. A Restricted Black-Box Adversarial Framework towards Attacking Graph Embedding Models[C]// AAAI. Proceedings of the AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2020, 34(4): 3389-3396.
|
[11] |
MA Jiaqi, DING Shuangrui, MEI Qiaozhu. Towards More Practical Adversarial Attacks on Graph Neural Networks[J]. Advances in Neural Information Processing Systems, 2020, 33: 4756-4766.
|
[12] |
KIPF T N, WELLING M. Semi-Supervised Classification with Graph Convolutional Networks[EB/OL]. (2017-02-22)[2024-04-10]. https://arxiv.org/pdf/1609.02907.
|
[13] |
GASTEIGER J, BOJCHEVSKI A, GUNNEMANN S. Predict then Propagate: Graph Neural Networks Meet Personalized Pagerank[EB/OL]. (2022-04-05)[2024-04-10]. https://arxiv.org/pdf/1810.05997.
|
[14] |
LOVASZ L. Random Walks on Graphs[J]. Combinatorics, Paul Erdos is Eighty, 1993, 2(1): 4-11.
|
[15] |
WANIEK M, MICHALAK T P, WOOLDRIDGE M J, et al. Hiding Individuals and Communities in a Social Network[J]. Nature Human Behaviour, 2018, 2(2): 139-147.
|
[16] |
CHEN Jinyin, WU Yangyang. Fast Gradient Attack on Network Embedding[EB/OL]. (2018-09-15)[2024-04-10]. https://arxiv.org/pdf/1809.02797.
|
[17] |
WU Huijun, WANG Chen, TYSHETSKIY Y, et al. Adversarial Examples on Graph Data: Deep Insights into Attack and Defense[EB/OL]. (2019-05-22)[2024-04-10]. https://arxiv.org/pdf/1903.01610.
|
[18] |
ENTEZARI N, Al-SAYOURI S A, DARVISHZADEH A, et al. All You Need is Low (Rank) Defending against Adversarial Attacks on Graphs[C]// ACM. Proceedings of the 13th International Conference on Web Search and Data Mining. New York: ACM, 2020: 169-177.
|
[19] |
ZHU Dingyuan, ZHANG Ziwei, CUI Peng, et al. Robust Graph Convolutional Networks against Adversarial Attacks[C]// ACM. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 1399-1407.
|