[1] |
BESSI A, FERRARA E. Social Bots Distort the 2016 Us Presidential Election Online Discussion[J]. First Monday, 2016, 16(21): 7-11.
|
[2] |
WENG Zixuan, LIN Aijun. Public Opinion Manipulation on Social Media: Social Network Analysis of Twitter Bots During the Covid-19 Pandemic[EB/OL]. (2022-12-07)[2023-10-20]. https://www.mdpi.com/1660-4601/19/24/16376.
|
[3] |
WANG Gang, MOHANLAL M, WILSON C, et al. Social Turing Tests: Crowdsourcing Sybil Detection[EB/OL]. (2012-12-07)[2023-10-20]. https://arxiv.org/pdf/1205.3856.pdf.
|
[4] |
DAVIS C A, VAROL O, FERRARA E, et al. Botornot: A System to Evaluate Social Bots[C]// ACM. 25th International Conference Companion on World Wide Web. New York: ACM, 2016: 273-274.
|
[5] |
DEWANGAN M, KAUSHAL R. Socialbot: Behavioral Analysis and Detection[C]// Springer. 4th International Symposium on Security in Computing and Communications (SSCC). Heidelberg:Springer, 2016: 450-460.
|
[6] |
KUDUGUNTA S, FERRARA E. Deep Neural Networks for Bot Detection[J]. Information Sciences, 2018, 467: 312-322.
doi: 10.1016/j.ins.2018.08.019
URL
|
[7] |
PING Heng, QIN Sujuan. A Social Bots Detection Model Based on Deep Learning Algorithm[C]// IEEE. 18th IEEE International Conference on Communication Technology (ICCT). New York:IEEE, 2018: 1435-1439.
|
[8] |
ALI A S, BIN T R, NAJAFI P, et al. Detect Me If You Can: SPAM Bot Detection Using Inductive Representation Learning[C]// ACM. Companion Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 148-153.
|
[9] |
FENG Shangbin, WAN Herun, WANG Ningnan, et al. BotRGCN: Twitter Bot Detection with Relational Graph Convolutional Networks[C]// ACM. 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. New York: ACM, 2021: 236-239.
|
[10] |
FENG Shangbin, WAN Herun, WANG Ningnan, et al. Satar: A Self-Supervised Approach to Twitter Account Representation Learning and Its Application in Bot Detection[C]// ACM. 30th ACM International Conference on Information & Knowledge Managemen. New York: ACM, 2021: 3808-3817.
|
[11] |
FENG Shangbin, TAN Zhaoxuan, LI Rui, et al. Heterogeneity-Aware Twitter Bot Detection with Relational Graph Transformers[C]// AAAI. AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2022, 36(4): 3977-3985.
|
[12] |
LE T, TRAN-THANH L, LEE D. Socialbots on Fire: Modeling Adversarial Behaviors of Socialbots via Multi-Agent Hierarchical Reinforcement Learning[C]// ACM. 31st ACM Web Conference (WWW). New York:ACM, 2022: 545-554.
|
[13] |
DES M N G, HUNTER D S, EL H Z, et al. Detecting Bots and Assessing Their Impact in Social Networks[J]. Operations Research, 2022, 70(1): 1-22.
doi: 10.1287/opre.2021.2118
URL
|
[14] |
MCPHERSON M, SMITH-LOVIN L, COOK J M. Birds of a Feather: Homophily in Social Networks[J]. Annual Review of Sociology, 2001, 27(1): 415-444.
doi: 10.1146/soc.2001.27.issue-1
URL
|
[15] |
SHEN Xiao, SUN Dewang, PAN Shirui, et al. Neighbor Contrastive Learning on Learnable Graph Augmentation[C]// AAAI. AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2023, 37(8): 9782-9791.
|
[16] |
YANG Peipei, ZHENG Zhuoyuan. Fake Account Detection with Attention-Based Graph Convolution Networks[C]// IEEE. 2020 IEEE 3rd International Conference on Automation, Electronics and Electrical Engineering (AUTEEE). New York:IEEE, 2020: 106-110.
|
[17] |
FENG Shangbin, WAN Herun, WANG Ningnan, et al. Twibot-20: A Comprehensive Twitter Bot Detection Benchmark[C]// ACM. 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 4485-4494.
|
[18] |
FENG Shangbin, TAN Zhaoxuan, WAN Herun, et al. TwiBot-22: Towards Graph-Based Twitter Bot Detection[J]. Advances in Neural Information Processing Systems, 2022(35): 35254-35269.
|
[19] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is All You Need[J]. Advances in Neural Information Processing Systems, 2017, (30): 6000-6010.
|
[20] |
WU Qi, YANG Yingguan, HE Buyun, et al. Heterophily-Aware Social Bot Detection with Supervised Contrastive Learning[EB/OL]. (2023-06-15)[2023-10-20]. https://doi.org/10.48550/arXiv.2306.07478.
|
[21] |
GILANI Z, FARAHBAKHSH R, TYSON G, et al. Of Bots and Humans (on Twitter)[C]// IEEE. The 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. New York: IEEE, 2017: 349-354.
|
[22] |
LUAN Sitao, HUA Chenqing, LU Qincheng, et al. Is Heterophily a Real Nightmare for Graph Neural Networks to Do Node Classification?[EB/OL]. (2021-09-12)[2023-10-20]. https://doi.org/10.48550/arXiv.2109.05641.
|
[23] |
BO Deyu, WANG Xiao, SHI Chuan, et al. Beyond Low-Frequency Information in Graph Convolutional Networks[C]// AAAI. AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2021, 35(5): 3950-3957.
|
[24] |
LIU Nian, WANG Xiao, BO Deyu, et al. Revisiting Graph Contrastive Learning from The Perspective of Graph Spectrum[J]. Advances in Neural Information Processing Systems, 2022, (35): 2972-2983.
|
[25] |
EKAMBARAM V N. Graph-Structured Data Viewed through a Fourier Lens[M]. Berkeley: University of California, 2014.
|
[26] |
VAN D M L, HINTON G. Visualizing Data Using T-SNE[J]. Journal of Machine Learning Research, 2008, 9(11): 2579-2605.
|