[1] |
KARNIK A, GOSWAMI S, GUHA R. Detecting Obfuscated Viruses Using Cosine Similarity Analysis[C]// IEEE. First Asia International Conference on Modelling & Simulation. New York: IEEE, 2007: 165-170.
|
[2] |
BRUSCHI D, MARTIGNONI L, MONGA M J I S, et al. Code Normalization for Self-Mutating Malware[J]. IEEE Security & Privacy, 2007, 5(2): 46-54.
|
[3] |
BEAUCAMPS P, GNAEDIG I, MARION J Y. Behavior Abstraction in Malware Analysis[C]// Springer. International Conference on Runtime Verification 2010. Berlin:Springer, 2010: 168-182.
|
[4] |
ZHANG Boyun, YIN Jianping, HAO Jingbo, et al. Malicious Codes Detection Based on Ensemble Learning[C]// Springer. International Conference on Autonomic and Trusted Computing 2007. Berlin:Springer, 2007: 468-477.
|
[5] |
VEERAMANI R, RAI N. Windows API Based Malware Detection and Framework Analysis[C]// IEEE. International Conference on Networks and Cyber Security. New York: IEEE, 2012: 1-6.
|
[6] |
TRINIUS P, WILLEMS C, HOLZ T, et al. A Malware Instruction Set for Behavior-Based Analysis[EB/OL]. (2010-01-01) [2023-05-12]. https://www.researchgate.net/publication/221307249_A_Malware_Instruction_Set_for_Behavior-Based_Analysis.
|
[7] |
SEARLES R, XU Lifan, KILLIAN W, et al. Parallelization of Machine Learning Applied to Call Graphs of Binaries for Malware Detection[C]// IEEE. 25th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP). New York: IEEE, 2017: 69-77.
|
[8] |
KI Y, KIM E, KIM H K. A Novel Approach to Detect Malware Based on API Call Sequence Analysis[J]. International Journal of Distributed Sensor Networks, 2015, 11(6): 1-9.
|
[9] |
MIRA F, BROWN A, HUANG Wei. Novel Malware Detection Methods by Using LCS and LCSS[C]// IEEE. 2016 22nd International Conference on Automation and Computing (ICAC). New York: IEEE, 2016: 554-559.
|
[10] |
DING Yuxin, XIA Xiaoling, CHEN Sheng, et al. A Malware Detection Method Based on Family Behavior Graph[J]. Computers & Security, 2018(73): 73-86.
|
[11] |
MING Jiang, XIN Zhi, LAN Pengwei, et al. Impeding Behavior-Based Malware Analysis via Replacement Attacks to Malware Specifications[J]. Journal of Computer Virology and Hacking Techniques, 2017, 13(3): 193-207.
doi: 10.1007/s11416-016-0281-3
URL
|
[12] |
PEKTAS A, ACARMAN T. Classification of Malware Families Based on Runtime Behaviors[J]. Journal of Information Security and Applications, 2017(37): 91-100.
|
[13] |
YUCEL C, KOLTUKSUZ A. Imaging and Evaluating the Memory Access for Malware[EB/OL]. (2020-03-01) [2023-05-12]. https://www.sciencedirect.com/science/article/abs/pii/S1742287619301902.
|
[14] |
OOSTHOEK K, DOERR C. SoK: ATT&CK Techniques and Trends in Windows Malware[C]// Springer. International Conference on Security and Privacy in Communication Systems. Berlin:Springer, 2019: 406-425.
|
[15] |
SMITH M R, JOHNSON N T, INGRAM J B, et al. Mind the Gap: on Bridging the Semantic Gap Between Machine Learning and Malware Analysis[C]// ACM. 13th ACM Workshop on Artificial Intelligence and Security. New York: ACM, 2020: 49-60.
|
[16] |
YANG Ping, SHU Hui, KANG Fei, et al. Generating Malicious Code Attack Graph Using Semantic Analysis[J]. Computer Science, 2021, 48(S1): 448-458.
|
|
杨萍, 舒辉, 康绯, 等. 一种基于语义分析的恶意代码攻击图生成方法[J]. 计算机科学, 2021, 48(S1): 448-458.
|
[17] |
LENGAUER T, TARJAN R E. A Fast Algorithm for Finding Dominators in a Flowgraph[J]. ACM Transactions on Programming Languages and Systems, 1979, 1(1): 121-141.
doi: 10.1145/357062.357071
URL
|
[18] |
EAGLE C. The IDA Pro Book[M]. San Francisco: No Starch Press, 2011.
|
[19] |
HARDOROUDI A H, DARESHURI A F, SARKAN H M. Robust Corrective and Preventive Action[C]// IEEE. 2011 IEEE International Systems Conference. New York: IEEE, 2011: 21-30.
|
[20] |
ANDERSON H S, ROTH P. EMBER: An Open Dataset for Training Static PE Malware Machine Learning Models[EB/OL]. (2018-04-16) [2023-05-12]. https://arxiv.org/abs/1804.04637.
|
[21] |
RAFF E, BARKER J, SYLVESTER J, et al. Malware Detection by Eating a Whole EXE[EB/OL]. (2017-10-25) [2023-05-12]. https://arxiv.org/abs/1710.09435.
|