Netinfo Security ›› 2026, Vol. 26 ›› Issue (1): 49-58.doi: 10.3969/j.issn.1671-1122.2026.01.004
Previous Articles Next Articles
SHI Yinsheng(
), BAO Yang, PANG Jingjing
Received:2025-11-07
Online:2026-01-10
Published:2026-02-13
CLC Number:
SHI Yinsheng, BAO Yang, PANG Jingjing. Research on a Federated Privacy Enhancement Method against GAN Attacks[J]. Netinfo Security, 2026, 26(1): 49-58.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2026.01.004
| [1] | MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-Efficient Learning of Deep Networks from Decentralized Data[C]// AISTATS. The 20th International Conference on AISTATS 2017. Indio: AISTATS, 2017: 1273-1282. |
| [2] | HITAJ B, ATENIESE G, PEREZ-CRUZ F. Deep Models under the GAN: Information Leakage from Collaborative Deep Learning[C]// ACM. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017: 603-618. |
| [3] | YIN Xuefei, ZHU Yanming, HU Jiankun. A Comprehensive Survey of Privacy-Preserving Federated Learning: A Taxonomy, Review, and Future Directions[J]. ACM Computing Surveys (CSUR), 2021, 54(6): 1-36. |
| [4] | DWORK C, MCSHERRY F, NISSIM K, et al. Calibrating Noise to Sensitivity in Private Data Analysis[C]// Springer. Theory of Cryptography. Heidelberg: Springer, 2006: 265-284. |
| [5] | MCSHERRY F, TALWAR K. Mechanism Design via Differential Privacy[C]// IEEE. The 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007). New York: IEEE, 2007: 94-103. |
| [6] | NIKOLOV A, TALWAR K, ZHANG Li. The Geometry of Differential Privacy: The Sparse and Approximate Cases[C]// ACM. The Forty-Fifth Annual ACM Symposium on Theory of Computing. New York: ACM, 2013: 351-360. |
| [7] |
WU Xiang, ZHANG Yongting, SHI Minyu, et al. An Adaptive Federated Learning Scheme with Differential Privacy Preserving[J]. Future Generation Computer Systems, 2022, 127: 362-372.
doi: 10.1016/j.future.2021.09.015 URL |
| [8] | TRUEX S, LIU Ling, CHOW K H, et al. LDP-Fed: Federated Learning with Local Differential Privacy[C]// ACM. The Third ACM International Workshop on Edge Systems, Analytics and Networking. New York: ACM, 2020: 61-66. |
| [9] |
WEI Kang, LI Jun, DING Ming, et al. Federated Learning with Differential Privacy: Algorithms and Performance Analysis[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 3454-3469.
doi: 10.1109/TIFS.2020.2988575 URL |
| [10] | YU Da, ZHANG Huishuai, CHEN Wei, et al. Gradient Perturbation Is Underrated for Differentially Private Convex Optimization[C]// ACM. The Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence. New York: ACM, 2021: 3117-3123. |
| [11] | XU Ruzhi, TONG Yumeng, DAI Lipeng. Research on Federated Learning Adaptive Differential Privacy Method Based on Heterogeneous Data[J]. Netinfo Security, 2025, 25(1): 63-77. |
| 徐茹枝, 仝雨蒙, 戴理朋. 基于异构数据的联邦学习自适应差分隐私方法研究[J]. 信息网络安全, 2025, 25(1): 63-77. | |
| [12] | XU Runhua, BARACALDO N, ZHOU Yi, et al. HybridAlpha: An Efficient Approach for Privacy-Preserving Federated Learning[C]// ACM. The 12th ACM Workshop on Artificial Intelligence and Security. New York: ACM, 2019: 13-23. |
| [13] | JIN Weizhao, YAO Yuhang, HAN Shanshan, et al. FedML-HE: An Efficient Homomorphic-Encryption-Based Privacy-Preserving Federated Learning System[EB/OL](2024-06-17)[2025-11-01]. https://doi.org/10.48550/arXiv.2303.10837 |
| [14] |
YU Feng, LIN Hui, WANG Xiaoding, et al. Communication-Efficient Personalized Federated Meta-Learning in Edge Networks[J]. IEEE Transactions on Network and Service Management, 2023, 20(2): 1558-1571.
doi: 10.1109/TNSM.2023.3263831 URL |
| [15] |
YIN Lihua, FENG Jiyuan, XUN Hao, et al. A Privacy-Preserving Federated Learning for Multiparty Data Sharing in Social IoTs[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(3): 2706-2718.
doi: 10.1109/TNSE.2021.3074185 |
| [16] |
RIVEST R L, SHAMIR A, ADLEMAN L. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems[J]. Communications of the ACM. 1983, 26(1): 96-99.
doi: 10.1145/357980.358017 URL |
| [17] |
ZHANG Li, XU Jianbo, VIJAYAKUMAR P, et al. Homomorphic Encryption-Based Privacy-Preserving Federated Learning in IoT-Enabled Healthcare System[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(5): 2864-2880.
doi: 10.1109/TNSE.2022.3185327 URL |
| [18] | ZHENG Chengbo, YAN Haonan, FU Caili, et al. Double Layer Federated Security Learning Architecture for Artificial Intelligence of Things[J]. Journal of Network and Information Security, 2024, 10(6): 71-80. |
| 郑诚波, 闫皓楠, 傅彩利, 等. 面向智能物联网的双层级联邦安全学习架构[J]. 网络与信息安全学报, 2024, 10(6): 71-80. | |
| [19] | LAI Chengzhe, ZHAO Yining, ZHENG Dong. A Privacy Protection and Verifiable Federated Learning Scheme Based on Homomorphic Encryption[J]. Netinfo Security, 2024, 24(1): 93-105. |
| 赖成喆, 赵益宁, 郑东. 基于同态加密的隐私保护与可验证联邦学习方案[J]. 信息网络安全, 2024, 24(1): 93-105. | |
| [20] | YAO Pan, ZHENG Chao, WANG He, et al. FedSHE: Privacy Preserving and Efficient Federated Learning with Adaptive Segmented CKKS Homomorphic Encryption[EB/OL](2024-07-04)[2025-11-01]. https://doi.org/10.1186/s42400-024-00232-w. |
| [21] | ZHANG Zehui, LI Qingdan, FU Yao, et al. Adaptive Federated Deep Learning with Non-IID Data[J]. Acta Automatica Sinica, 2023, 49(12): 2493-2506. |
| 张泽辉, 李庆丹, 富瑶, 等. 面向非独立同分布数据的自适应联邦深度学习算法[J]. 自动化学报, 2023, 49(12): 2493-2506. | |
| [22] | DWORK C, KENTHAPADI K, MCSHERRY F, et al. Our Data, Ourselves: Privacy via Distributed Noise Generation[C]// Springer. Advances in Cryptology-EUROCRYPT 2006. Heidelberg: Springer, 2006: 486-503. |
| [23] | MIRONOV I. Rényi Differential Privacy[C]// IEEE. 2017 IEEE 30th Computer Security Foundations Symposium (CSF). New York: IEEE, 2017: 263-275. |
| [24] | ABADI M, CHU A, GOODFELLOW I, et al. Deep Learning with Differential Privacy[C]// ACM. The 2016 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2016: 308-318. |
| [25] |
LI Wenling, YU Ping, CHENG Yanan, et al. Efficient and Privacy-Enhanced Federated Learning Based on Parameter Degradation[J]. IEEE Transactions on Services Computing, 2024, 17(5): 2304-2319.
doi: 10.1109/TSC.2024.3399659 URL |
| [1] | ZHENG Kaifa, LUO Zhenpeng, LIU Jiayi, LIU Zhiquan, WANG Ze, WU Yunkun. A Lightweight Dynamic Node Participation Scheme for Federated Learning Nodes Supporting Attribute Update [J]. Netinfo Security, 2026, 26(1): 102-114. |
| [2] | CHEN Xianyi, WANG Xuebo, CUI Qi, FU Zhangjie, WANG Qianqian, ZENG Yifu. Overview of Backdoor Attacks and Defenses in Personalized Federated Learning [J]. Netinfo Security, 2025, 25(9): 1418-1438. |
| [3] | YAN Yukun, TANG Peng, CHEN Rui, DU Ruochen, HAN Qilong. A Randomness Enhanced Bi-Level Optimization Defense Method against Data Poisoning Backdoor Attacks [J]. Netinfo Security, 2025, 25(7): 1074-1091. |
| [4] | XUN Yijie, CUI Jiarong, MAO Bomin, QIN Junman. Intrusion Detection System for the Controller Area Network Bus of Intelligent Vehicles Based on Federated Learning [J]. Netinfo Security, 2025, 25(6): 872-888. |
| [5] | DENG Dongshang, WANG Weiye, ZHANG Weidong, WU Xuangou. Layered Personalized Federated Learning Guided by Model Feature Orientation [J]. Netinfo Security, 2025, 25(6): 889-897. |
| [6] | ZHU Shuaishuai, LIU Keqian. A Masking-Based Selective Federated Distillation Scheme [J]. Netinfo Security, 2025, 25(6): 920-932. |
| [7] | ZHAO Feng, FAN Song, ZHAO Yanqi, CHEN Qian. Privacy-Preserving Methods for Streaming Data in Wearable Medical Devices Based on Local Differential Privacy [J]. Netinfo Security, 2025, 25(5): 700-712. |
| [8] | LI Xiao, SONG Xiao, LI Yong. Research on Differential Privacy Methods for Medical Diagnosis Based on Knowledge Distillation [J]. Netinfo Security, 2025, 25(4): 524-535. |
| [9] | LI Jiadong, ZENG Haitao, PENG Li, WANG Xiaoding. An Anonymous Routing Federated Learning Framework for Data Privacy Protection [J]. Netinfo Security, 2025, 25(3): 494-503. |
| [10] | WANG Yajie, LU Jinbiao, LI Yuhang, FAN Qing, ZHANG Zijian, ZHU Liehuang. Hierarchical Dynamic Protection Algorithm for Federated Learning Based on Trusted Execution Environment [J]. Netinfo Security, 2025, 25(11): 1762-1773. |
| [11] | XU Ruzhi, TONG Yumeng, DAI Lipeng. Research on Federated Learning Adaptive Differential Privacy Method Based on Heterogeneous Data [J]. Netinfo Security, 2025, 25(1): 63-77. |
| [12] | GUO Qian, ZHAO Jin, GUO Yi. Hierarchical Clustering Federated Learning Framework for Personalized Privacy-Preserving [J]. Netinfo Security, 2024, 24(8): 1196-1209. |
| [13] | YIN Chunyong, JIA Xukang. Research on 3D-Location Privacy Publishing Algorithm Based on Policy Graph [J]. Netinfo Security, 2024, 24(4): 602-613. |
| [14] | XUE Mingzhu, HU Liang, WANG Ming, WANG Feng. TAP Rule Processing System Based on Federated Learning and Blockchain Technology [J]. Netinfo Security, 2024, 24(3): 473-485. |
| [15] | LIN Yihang, ZHOU Pengyuan, WU Zhiqian, LIAO Yong. Federated Learning Backdoor Defense Method Based on Trigger Inversion [J]. Netinfo Security, 2024, 24(2): 262-271. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||