Netinfo Security ›› 2025, Vol. 25 ›› Issue (7): 1074-1091.doi: 10.3969/j.issn.1671-1122.2025.07.007
Previous Articles Next Articles
YAN Yukun1,2, TANG Peng3, CHEN Rui1,2(
), DU Ruochen1,2, HAN Qilong1,2
Received:2025-05-07
Online:2025-07-10
Published:2025-08-07
Contact:
CHEN Rui
E-mail:ruichen@hrbeu.edu.cn
CLC Number:
YAN Yukun, TANG Peng, CHEN Rui, DU Ruochen, HAN Qilong. A Randomness Enhanced Bi-Level Optimization Defense Method against Data Poisoning Backdoor Attacks[J]. Netinfo Security, 2025, 25(7): 1074-1091.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2025.07.007
| 符号 | 说明 |
|---|---|
| 原始干净数据集 | |
| 中毒数据集 | |
| 中毒数据集内干净子集 | |
| 中毒数据集内中毒子集 | |
| 粗筛候选干净样本集 | |
| 精筛候选干净样本集 | |
| 可疑中毒样本集 | |
| 可信样本集 | |
| 正常模型训练方法 | |
| 鲁棒性增强模型训练方法 | |
| 只拟和后门特征的模型训练方法 | |
| 面向干净特征的拟和解耦训练方法 | |
| DNN模型参数 | |
| 后门模型参数 | |
| 仅执行若干轮次训练的后门模型参数 | |
| 仅拟和后门特征的模型参数 | |
| 鲁棒性增强模型参数 | |
| 具有后门防御力的模型参数 | |
| 线性预测层参数 | |
| 骨干网络参数 | |
| 经过自监督预训练的骨干网络参数 |
| 方法 | 均值 | SS | AC | SCAn | CT | RADAR | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| C I F A R - 10 | TPR (%) | FPR (%) | TPR (%) | FPR (%) | TPR (%) | FPR (%) | TPR (%) | FPR (%) | TPR (%) | FPR (%) | |
| No Poison | — | 15.02 | — | 3.13 | — | 2.42 | — | 2.2 | — | 1.33 | |
| BadNets | 100 | 14.14 | 100 | 3.09 | 100 | 0.30 | 100 | 0.06 | 100 | 1.23 | |
| Blend | 93.40 | 14.20 | 0.00 | 3.25 | 96.0 | 3.38 | 99.40 | 1.15 | 99.42 | 1.20 | |
| Trojan | 22.20 | 14.93 | 0.00 | 2.14 | 100 | 0.02 | 100 | 0.45 | 100 | 0.37 | |
| CL | 90.10 | 14.24 | 100 | 2.80 | 100 | 2.76 | 100 | 0.02 | 100 | 0.75 | |
| SIG | 0.00 | 15.15 | 0.00 | 5.11 | 96.60 | 7.78 | 100 | 0.51 | 100 | 0.69 | |
| Dynamic | 99.00 | 14.15 | 99.0 | 2.13 | 98.00 | 3.42 | 100 | 0.14 | 100 | 0.51 | |
| TaCT | 73.60 | 14.41 | 0.00 | 2.02 | 100 | 3.52 | 100 | 0.48 | 100 | 3.56 | |
| Adap-patch | 70.40 | 14.44 | 0.00 | 5.91 | 97.40 | 2.06 | 99.03 | 0.41 | 93.2 | 0.43 | |
| Adap-blend | 89.00 | 14.25 | 0.00 | 2.37 | 0.00 | 2.51 | 100 | 0.73 | 97.0 | 1.56 | |
| Average | 70.86 | 14.49 | 33.22 | 3.19 | 87.56 | 2.82 | 99.82 | 0.62 | 98.85 | 1.16 | |
| G T S R B | No Poison | — | 39.13 | — | 5.78 | — | 2.13 | — | 0.55 | — | 3.23 |
| BadNets | 92.85 | 38.41 | 89.11 | 5.44 | 87.22 | 38.41 | 100 | 0.01 | 100 | 2.26 | |
| Blend | 93.99 | 38.39 | 99.25 | 76.09 | 93.99 | 0.03 | 100 | 0.16 | 100 | 1.01 | |
| Trojan | 99.25 | 38.34 | 99.25 | 5.28 | 100 | 0.01 | 100 | 0.52 | 100 | 0.09 | |
| SIG | 65.04 | 38.85 | 0.00 | 10.76 | 61.28 | 0.00 | 100 | 1.57 | 100 | 3.87 | |
| Dynamic | 89.11 | 38.44 | 77.82 | 10.52 | 74.81 | 0.00 | 100 | 1.15 | 100 | 0.22 | |
| TaCT | 90.60 | 38.57 | 0.00 | 5.02 | 98.87 | 0.00 | 100 | 0.24 | 100 | 5.85 | |
| Adap-patch | 51.13 | 38.83 | 0.00 | 5.76 | 4.89 | 1.69 | 90.23 | 1.02 | 86.84 | 4.73 | |
| Adap-blend | 36.84 | 38.97 | 0.00 | 6.08 | 97.4 | 2.98 | 100 | 1.36 | 95.86 | 5.83 | |
| Average | 77.35 | 38.66 | 46.68 | 14.53 | 77.31 | 5.03 | 98.78 | 0.73 | 97.83 | 2.71 | |
| 方法 | 均值 | No Defense | SS | AC | SCAn | NC | ABL | NAD | DBD | ASD | CT | RADAR | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| C I F A R - 10 | BadNets | ACC(%) | 93.81 | 92.97 | 92.20 | 93.90 | 93.77 | 89.63 | 85.26 | 86.77 | 92.91 | 93.88 | 91.95 |
| ASR(%) | 100 | 0.69 | 0.75 | 0.66 | 0.91 | 100 | 1.81 | 1.94 | 100 | 0.61 | 1.23 | ||
| Blend | ACC(%) | 93.98 | 92.51 | 91.41 | 93.27 | 93.47 | 84.13 | 86.46 | 84.65 | 93.07 | 93.46 | 92.36 | |
| ASR(%) | 100 | 33.05 | 98.23 | 23.61 | 8.67 | 73.85 | 7.81 | 99.94 | 0.01 | 6.89 | 1.58 | ||
| Trojan | ACC(%) | 93.81 | 91.78 | 92.18 | 94.16 | 93.28 | 84.85 | 78.45 | 80.11 | 93.00 | 93.60 | 92.40 | |
| ASR(%) | 100 | 99.91 | 99.97 | 1.12 | 1.71 | 3.12 | 4.04 | 6.22 | 1.23 | 2.36 | 2.19 | ||
| CL | ACC(%) | 93.82 | 92.51 | 91.53 | 93.48 | 93.66 | 84.15 | 86.59 | 84.58 | 91.17 | 93.3 | 92.26 | |
| ASR(%) | 99.66 | 99.73 | 0.98 | 1.46 | 0.87 | 99.98 | 21.47 | 99.93 | 99.97 | 0.87 | 1.37 | ||
| SIG | ACC(%) | 93.91 | 91.97 | 90.97 | 92.65 | 91.90 | 84.85 | 85.01 | 87.62 | 90.18 | 93.25 | 92.71 | |
| ASR(%) | 81.02 | 89.86 | 77.53 | 0.91 | 88.75 | 76.96 | 1.07 | 48.14 | 73.93 | 0.22 | 0.14 | ||
| Dynamic | ACC(%) | 94.43 | 91.71 | 92.13 | 92.98 | 93.65 | 88.64 | 86.84 | 90.05 | 92.03 | 94.03 | 92.47 | |
| ASR(%) | 99.85 | 8.48 | 16.76 | 17.01 | 4.46 | 15.64 | 22.67 | 99.95 | 2.39 | 7.17 | 6.28 | ||
| TaCT | ACC(%) | 94.23 | 92.26 | 92.76 | 92.86 | 93.91 | 81.33 | 85.65 | 92.75 | 92.97 | 94.23 | 92.66 | |
| ASR(%) | 97.48 | 72.68 | 97.45 | 0.96 | 0.48 | 87.9 | 9.75 | 2.82 | 68.71 | 2.51 | 2.17 | ||
| Adap -patch | ACC(%) | 93.86 | 92.02 | 91.12 | 93.6 | 93.08 | 77.03 | 85.54 | 89.16 | 93.46 | 93.55 | 92.56 | |
| ASR(%) | 99.68 | 92.17 | 99.06 | 1.15 | 95.16 | 99.96 | 6.12 | 2.23 | 10.52 | 1.04 | 1.49 | ||
| Adap -blend | ACC(%) | 93.95 | 91.65 | 91.68 | 93.9 | 93.31 | 93.87 | 87.63 | 80.57 | 92.18 | 93.8 | 92.68 | |
| ASR(%) | 94.74 | 10.87 | 94.51 | 96.13 | 5.39 | 80.67 | 22.65 | 9.13 | 0.68 | 0.48 | 1.47 | ||
| Average | ACC(%) | 93.97 | 92.15 | 91.77 | 93.42 | 93.33 | 85.38 | 85.27 | 86.25 | 92.33 | 93.67 | 92.45 | |
| ASR(%) | 96.93 | 56.38 | 65.02 | 23.64 | 22.93 | 70.89 | 10.82 | 41.14 | 39.71 | 2.46 | 1.99 | ||
| G T S R B | BadNets | ACC(%) | 94.42 | 91.77 | 93.10 | 93.16 | 93.12 | 90.91 | 94.49 | 90.26 | 95.88 | 94.89 | 94.87 |
| ASR(%) | 94.88 | 0.62 | 0.56 | 0.88 | 13.56 | 17.63 | 6.05 | 0.08 | 100.00 | 0.26 | 0.21 | ||
| Blend | ACC(%) | 92.88 | 90.55 | 92.21 | 93.82 | 92.49 | 65.06 | 93.78 | 90.89 | 95.51 | 93.04 | 95.39 | |
| ASR(%) | 96.89 | 58.66 | 3.89 | 28.34 | 6.31 | 1.38 | 49.39 | 0.50 | 0.51 | 0.36 | 0.35 | ||
| Trojan | ACC(%) | 93.44 | 91.21 | 92.42 | 94.89 | 93.38 | 85.65 | 94.08 | 90.30 | 95.50 | 93.17 | 94.43 | |
| ASR(%) | 99.99 | 0.82 | 0.41 | 0.40 | 29.50 | 99.72 | 0.85 | 0.34 | 0.61 | 0.47 | 0.14 | ||
| SIG | ACC(%) | 93.23 | 88.94 | 90.44 | 93.19 | 93.23 | 82.41 | 93.64 | 91.80 | 96.18 | 93.10 | 95.02 | |
| ASR(%) | 49.39 | 28.36 | 53.12 | 4.15 | 49.39 | 38.29 | 6.38 | 20.78 | 21.36 | 0.92 | 0.74 | ||
| Dynamic | ACC(%) | 93.40 | 90.65 | 90.38 | 93.73 | 92.54 | 85.76 | 93.90 | 90.61 | 95.58 | 94.41 | 95.24 | |
| ASR(%) | 100.00 | 25.06 | 54.44 | 96.04 | 79.82 | 77.57 | 96.50 | 0.59 | 0.00 | 0.11 | 0.75 | ||
| TaCT | ACC(%) | 93.75 | 89.18 | 92.62 | 94.06 | 93.75 | 96.52 | 94.47 | 90.09 | 96.58 | 93.28 | 93.10 | |
| ASR(%) | 98.73 | 50.27 | 99.93 | 0.20 | 98.73 | 97.85 | 1.47 | 1.00 | 99.80 | 0.00 | 0.07 | ||
| Adap -patch | ACC(%) | 93.73 | 90.46 | 93.38 | 93.64 | 92.91 | 92.83 | 94.92 | 92.36 | 95.28 | 93.34 | 93.55 | |
| ASR(%) | 90.30 | 56.26 | 81.73 | 79.73 | 59.64 | 84.60 | 16.34 | 0.56 | 97.22 | 6.55 | 2.59 | ||
| Adap -blend | ACC(%) | 93.93 | 90.79 | 92.04 | 93.45 | 93.73 | 80.42 | 93.86 | 91.72 | 95.79 | 93.78 | 93.13 | |
| ASR(%) | 95.60 | 88.15 | 95.40 | 0.34 | 23.43 | 100.00 | 29.60 | 0.20 | 80.65 | 0.06 | 3.02 | ||
| Average | ACC(%) | 93.60 | 90.44 | 92.07 | 93.74 | 93.14 | 84.94 | 94.14 | 91.01 | 95.79 | 93.63 | 94.34 | |
| ASR(%) | 90.72 | 38.52 | 48.69 | 26.26 | 45.05 | 64.63 | 25.82 | 3.01 | 50.02 | 1.09 | 0.98 | ||
| 第一次迭代 | 第二次迭代 | 第三次迭代 | TPR(%) | FPR(%) | ACC(%) | ASR(%) | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Blend | |||||||||||||
| RADAR | 128/ 5000 | 2/ 495 | 4987/ 24270 | 15/ 12865 | 1/ 1283 | 4998/ 11608 | 2/ 19196 | 0/ 7674 | 4997/ 5020 | 99.94 | 0.05 | 92.36 | 2.33 |
| RADAR×w/o×SS | 952/ 500 | 95/ 495 | 2/ 30600 | 2514/ 9700 | 251/ 964 | 1/ 17136 | 2629/ 16432 | 1051/ 6566 | 3/ 3640 | 0.06 | 8.08 | 89.25 | 99.87 |
| RADAR×w/o×DP | 254/ 5000 | 2/ 495 | 4998/ 33144 | 2/ 8428 | 0/ 840 | 5000/ 18304 | 0/ 15848 | 0/ 6333 | 4997/ 5227 | 99.94 | 0.51 | 92.00 | 1.47 |
| RADAR×w× | 944/ 5000 | 94/ 495 | 17/ 9079 | 3508/ 20461 | 350/ 2041 | 2/ 6672 | 3049/ 21664 | 1219/ 8660 | 31/ 4293 | 0.62 | 9.47 | 87.83 | 99.95 |
| RADAR×w× | 128/ 5000 | 2/ 495 | 4998/ 32542 | 2/ 8729 | 0/ 868 | 4998/ 21598 | 2/ 14201 | 0/ 5675 | 4990/ 5241 | 99.80 | 0.56 | 91.94 | 2.61 |
| RADAR×w/o×Ad | 128/ 5000 | 2/ 495 | 4947/ 24270 | 17/ 12865 | 1/ 1283 | 5000/ 12020 | 0/ 18990 | 0/ 7591 | 4994/ 5168 | 99.88 | 0.39 | 91.91 | 2.43 |
| RADAR×w× 重新 训练 | — | — | — | — | — | — | — | — | — | — | — | 87.16 | 1.01 |
| Dynamic | |||||||||||||
| RADAR | 151/ 5000 | 0/ 495 | 5000/ 36601 | 0/ 6700 | 0/ 666 | 4996/ 22148 | 3/ 13926 | 1/ 5566 | 4997/ 5294 | 99.94 | 0.66 | 91.85 | 4.99 |
| RADAR×w/o×SS | 948/ 5000 | 93/ 495 | 923/ 11073 | 3167/ 19464 | 320/ 1941 | 360/ 7338 | 3113/ 21331 | 1245/ 8528 | 21/ 3934 | 0.42 | 8.69 | 88.53 | 99.97 |
| RADAR×w/o×DP | 178/ 5000 | 0/ 495 | 5000/ 38548 | 0/ 5726 | 0/ 570 | 4996/ 26346 | 4/ 11827 | 3/ 4730 | 4996/ 7043 | 99.92 | 4.54 | 91.08 | 9.64 |
| RADAR×w× | 188/ 5000 | 0/ 495 | 5000/ 36153 | 0/ 6924 | 0/ 688 | 4994/ 24699 | 6/ 12651 | 4/ 5050 | 4974/ 5203 | 99.48 | 0.51 | 93.46 | 85.77 |
| RADAR×w× | 151/ 5000 | 0/ 495 | 4977/ 36800 | 3/ 6600 | 0/ 654 | 5000/ 22963 | 0/ 13519 | 0/ 5407 | 4996/ 5596 | 99.92 | 1.33 | 92.90 | 9.73 |
| RADAR×w/o×Ad | 151/ 5000 | 0/ 495 | 5000/ 36601 | 0/ 6700 | 0/ 666 | 4996/ 23024 | 4/ 13488 | 1/ 5390 | 4996/ 5208 | 99.92 | 0.47 | 92.19 | 5.91 |
| RADAR×w× 重新 训练 | — | — | — | — | — | — | — | — | — | — | — | 88.43 | 4.97 |
| Adap-patch | |||||||||||||
| RADAR | 101/ 5000 | 1/ 495 | 4996/ 33467 | 4/ 8267 | 1/ 822 | 4983/ 22444 | 6/ 13778 | 1/ 5507 | 4962/ 5060 | 99.24 | 0.22 | 91.96 | 1.26 |
| RADAR×w/o×SS | 128/ 5000 | 4/ 495 | 4972/ 29324 | 21/ 10338 | 1/ 1029 | 4983/ 15758 | 15/ 17121 | 3/ 6843 | 4917/ 4985 | 98.34 | 0.15 | 92.12 | 2.18 |
| RADAR×w/o×DP | 107/ 5000 | 3/ 495 | 4991/ 32474 | 9/ 8763 | 3/ 873 | 4972/ 22794 | 17/ 13603 | 4/ 5441 | 4931/ 5151 | 99.42 | 0.48 | 91.13 | 2.62 |
| RADAR×w× | 126/ 5000 | 3/ 495 | 4942/ 21351 | 49/ 14325 | 4/ 1428 | 4936/ 13893 | 55/ 18054 | 23/ 7217 | 4857/ 4955 | 97.14 | 0.22 | 93.51 | 25.64 |
| RADAR×w× | 101/ 5000 | 1/ 495 | 4995/ 34788 | 5/ 7606 | 2/ 754 | 4993/ 23792 | 7/ 13104 | 4/ 5244 | 4930/ 5106 | 98.60 | 0.39 | 91.95 | 0.81 |
| RADAR×w/o×Ad | 101/ 5000 | 1/ 495 | 4995/ 33467 | 5/ 8267 | 1/ 822 | 4993/ 21409 | 7/ 14296 | 4/ 5714 | 4886/ 5715 | 97.72 | 1.84 | 91.9 | 11.10 |
| RADAR×w× 重新 训练 | — | — | — | — | — | — | — | — | — | — | — | 89.50 | 0.89 |
| Adap-blend | |||||||||||||
| RADAR | 87/ 5000 | 0/ 495 | 4985/ 25442 | 5/ 12279 | 1/ 1224 | 4989/ 12604 | 8/ 18698 | 2/ 7474 | 4972/ 5802 | 99.44 | 1.84 | 91.96 | 0.94 |
| RADAR×w/o×SS | 181/ 5000 | 7/ 495 | 4825/ 31713 | 63/ 9144 | 9/ 910 | 4954/ 13762 | 32/ 18119 | 12/ 7243 | 3018/ 3638 | 60.36 | 1.38 | 90.26 | 99.38 |
| RADAR×w/o×DP | 96/ 5000 | 4/ 495 | 4959/ 33326 | 10/ 8337 | 2/ 830 | 4986/ 18332 | 11/ 15834 | 5/ 6328 | 4891/ 5576 | 97.82 | 1.51 | 91.58 | 13.55 |
| RADAR×w× | 97/ 5000 | 0/ 495 | 4996/ 23759 | 2/ 13121 | 0/ 1307 | 4996/ 11741 | 1/ 19130 | 1/ 7646 | 4974/ 5575 | 99.48 | 1.33 | 93.51 | 0.43 |
| RADAR×w× | 87/ 5000 | 0/ 495 | 4983/ 28640 | 5/ 10680 | 1/ 1036 | 4979/ 14271 | 16 /17865 | 4/ 7144 | 4955/ 5407 | 99.10 | 1.01 | 92.15 | 1.86 |
| RADAR×w/o×Ad | 87/ 5000 | 0/ 495 | 4985/ 25442 | 5/ 12279 | 1/ 1224 | 4959/ 14558 | 31/ 17721 | 12/ 7082 | 4927/ 5510 | 98.54 | 1.29 | 91.73 | 5.56 |
| RADAR×w× 重新训练 | — | — | — | — | — | — | — | — | — | — | — | 87.51 | 3.64 |
| [1] | ZHANG Jinghuai, LIU Hongbin, JIA Jinyuan, et al. Data Poisoning Based Backdoor Attacks to Contrastive Learning[C]// IEEE. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2024: 24357-24366. |
| [2] | HAN Xingshuo, WU Yutong, ZHANG Qingjie, et al. Backdooring Multimodal Learning[C]// IEEE. 2024 IEEE Symposium on Security and Privacy. New York: IEEE, 2024: 3385-3403. |
| [3] | XU Yuancheng, YAO Jiarui, SHU Manli, et al. Shadowcast: Stealthy Data Poisoning Attacks Against Vision-Language Models[C]// Neural Information Processing Systems. The 38th International Conference on Neural Information Processing Systems. New York: Curran Associates, 2024: 57733-57764. |
| [4] | GAO Mengnan, CHEN Wei, WU Lifa, et al. Survey on Backdoor Attacks and Defenses for Deep Learning Research[EB/OL]. (2025-04-27) [2025-04-29]. https://www.jos.org.cn/jos/article/pdf/7364. |
| 高梦楠, 陈伟, 吴礼发, 等. 面向深度学习的后门攻击及防御研究综述[EB/OL]. (2025-04-27) [2025-04-29]. https://www.jos.org.cn/jos/article/pdf/7364. | |
| [5] | WANG Renshuai, YANG Kuiwu, CHEN Yue, et al. Survey of Deep Learning Backdoor Attack on Image Data[EB/OL]. (2024-12-09) [2025-04-29]. https://www.ecice06.com/CN/10.19678/j.issn.1000-3428.00%2070128. |
| 王人帅, 杨奎武, 陈越, 等. 面向图像数据的深度学习后门攻击技术综述[EB/OL]. (2024-12-09) [2025-04-29]. https://www.ecice06.com/CN/10.19678/j.issn.1000-3428.00%2070128. | |
| [6] | ZHOU Jiachen, LYU Peizhuo, LAN Yibing, et al. DataElixir: Purifying Poisoned Dataset to Mitigate Backdoor Attacks via Diffusion Models[C]// AAAI. The 38th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2024: 21850-21858. |
| [7] | AN Shengwei, CHOU S Y, ZHANG Kaiyuan, et al. Elijah: Eliminating Backdoors Injected in Diffusion Models via Distribution Shift[C]// AAAI. The 38th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2024: 10847-10855. |
| [8] | ZHU Liuwan, NING Rui, LI Jiang, et al. Seer: Backdoor Detection for Vision-Language Models through Searching Target Text and Image Trigger Jointly[C]// AAAI. The 38th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2024: 7766-7774. |
| [9] | BORGNIA E, GEIPING J, CHEREPANOVA V, et al. Dp-Instahide:Provably Defusing Poisoning and Backdoor Attacks with Differentially Private Data Augmentations[EB/OL]. (2021-05-21) [2025-04-29]. https://arxiv.org/pdf/2103.02079. |
| [10] | TRAN B, LI J, MADRY A. Spectral Signatures in Backdoor Attacks[C]// Neural Information Processing Systems. The 32nd International Conference on Neural Information Processing Systems. New York: Curran Associates, 2018: 8011-8021. |
| [11] | CHEN B, CARVALHO W, BARACALDO N, et al. Detecting Backdoor Attacks on Deep Neural Networks by Activation Clustering[EB/OL]. (2018-11-09) [2025-04-29]. https://arxiv.org/pdf/1811.03728. |
| [12] | QI Xiangyu, XIE Tinghao, WANG J T, et al. Towards a Proactive ML Approach for Detecting Backdoor Poison Samples[C]// USENIX. 32nd USENIX Security Symposium (USENIX Security ’23). Berkeley: USENIX, 2023: 1685-1702. |
| [13] | DU Min, JIA Ruoxi, SONG D. Robust Anomaly Detection and Backdoor Attack Detection via Differential Privacy[EB/OL]. (2019-11-16) [2025-04-29]. https://arxiv.org/pdf/1911.07116. |
| [14] | HONG S, CHANDRASEKARAN V, KAYA Y, et al. On the Effectiveness of Mitigating Data Poisoning Attacks with Gradient Shaping[EB/OL]. (2020-02-27) [2025-04-29]. https://arxiv.org/pdf/2002.11497. |
| [15] | NGUYEN T D, RIEGER P, DE V R, et al. FLAME: Taming Backdoors in Federated Learning[C]// USENIX. 31st USENIX Security Symposium (USENIX Security ’22). Berkeley: USENIX, 2022: 1415-1432. |
| [16] | NASERI M, HAYES J, DE C E. Local and Central Differential Privacy for Robustness and Privacy in Federated Learning[EB/OL]. (2022-05-27) [2025-04-29]. https://www.ndss-symposium.org/wp-content/uploads/2022-54-paper.pdf. |
| [17] | LI Yige, LYU Xixiang, KOREN N, et al. Anti-Backdoor Learning: Training Clean Models on Poisoned Data[C]// Neural Information Processing Systems. The 35th International Conference on Neural Information Processing Systems. New York: Curran Associates, 2021: 14900-14912. |
| [18] | HUANG Kunzhe, LI Yiming, WU Baoyuan, et al. Backdoor Defense via Decoupling the Training Process[EB/OL]. (2022-02-05) [2025-04-29]. https://arxiv.org/pdf/2202.03423. |
| [19] | ABADI M, CHU A, GOODFELLOW I, et al. Deep Learning with Differential Privacy[C]// ACM. The 2016 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2016: 308-318. |
| [20] | LOWY A, LI Z, HUANG Tianjian, et al. Optimal Differentially Private Model Training with Public Data[EB/OL]. (2024-09-09) [2025-04-29]. https://arxiv.org/pdf/2306.15056. |
| [21] | SHOKRI R, STRONATI M, SONG C, et al. Membership Inference Attacks Against Machine Learning Models[C]// IEEE. 2017 IEEE Symposium on Security and Privacy (SP). New York: IEEE, 2017: 3-18. |
| [22] | ZHANG Zaixi, LIU Qi, HUANG Zhenya, et al. GraphMI: Extracting Private Graph Data from Graph Neural Networks[EB/OL]. (2021-06-05) [2025-04-29]. https://www.ijcai.org/proceedings/2021/0516.pdf. |
| [23] | ZHANG Shijie, YIN Hongzhi, CHEN Tong, et al. Graph Embedding for Recommendation Against Attribute Inference Attacks[C]// ACM. The Web Conference 2021. New York: ACM, 2021: 3002-3014. |
| [24] | NA S H, HONG H G, KIM J, et al. Closing the Loophole: Rethinking Reconstruction Attacks in Federated Learning from a Privacy Standpoint[C]// ACM. The 38th Annual Computer Security Applications Conference. New York: ACM, 2022: 332-345. |
| [25] | ZHU Heng, LING Qing. Bridging Differential Privacy and Byzantine-Robustness via Model Aggregation[EB/OL]. (2022-08-02) [2025-04-29]. https://www.ijcai.org/proceedings/2022/0337.pdf. |
| [26] | YAN Yukun, YE Qingqing, HU Haibo, et al. Towards Defending against Byzantine LDP Amplified Gain Attacks[EB/OL]. (2023-04-17) [2025-04-29]. https://doi.org/10.1007/978-3-031-30637-2_42. |
| [27] | LECUYER M, ATLIDAKIS V, GEAMBASU R, et al. Certified Robustness to Adversarial Examples with Differential Privacy[C]// IEEE. IEEE Symposium on Security and Privacy (SP). New York: IEEE, 2019: 656-672. |
| [28] | LIU Shijie, CULLEN A C, MONTAGUE P, et al. Enhancing the Antidote: Improved Pointwise Certifications Against Poisoning Attacks[C]// AAAI. The 37th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2023: 8861-8869. |
| [29] | YAN Yukun, TANG Peng, CHEN Rui, et al. DPC:Filtering Out Patch-Based Poisoned Samples with Differential Privacy[EB/OL]. (2024-09-16) [2025-04-29]. https://doi.org/10.1007/978-3-031-70890-9_15. |
| [30] | KRIZHEVSKY A, HINTION G. Learning Multiple Layers of Features from Tiny Images[J]. Handbook of Systemic Autoimmune Diseases, 2009, 3: 1-7. |
| [31] | HOUBEN S, STALLKAMP J, SALMEN J, et al. Detection of Traffic Signs in Real-World Images: The German Traffic Sign Detection Benchmark[C]// IEEE. The 2013 International Joint Conference on Neural Networks (IJCNN). New York: IEEE, 2013: 1-8. |
| [32] |
GU Tianyu, LIU Kang, DOLAN-GAVITT B, et al. Badnets: Evaluating Backdooring Attacks on Deep Neural Networks[J]. IEEE Access, 2019, 7: 47230-47244.
doi: 10.1109/ACCESS.2019.2909068 |
| [33] | CHEN Xinyun, LIU Chang, LI Bo, et al. Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning[EB/OL]. (2017-12-15) [2025-04-29]. https://arxiv.org/pdf/1712.05526. |
| [34] | LIU Yingqi, MA Shiqing, AAFER Y, et al. Trojaning Attack on Neural Networks[EB/OL]. (2017-09-05) [2025-04-29]. https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_03A-5_Liu_paper.pdf. |
| [35] | TURNER A, TSIPRAS D, MADRY A. Label-Consistent Backdoor Attacks[EB/OL]. (2019-12-06) [2025-04-29]. https://www.arxiv.org/pdf/1912.02771. |
| [36] | BARNI M, KALLAS K, TONDI B. A New Backdoor Attack in CNNS by Training Set Corruption Without Label Poisoning[C]// IEEE. 2019 IEEE International Conference on Image Processing (ICIP). New York: IEEE, 2019: 101-105. |
| [37] | NGUYEN T A, TRAN A. Input-Aware Dynamic Backdoor Attack[C]// Neural Information Processing Systems. The 34th International Conference on Neural Information Processing Systems. New York: Curran Associates, 2020: 3454-3464. |
| [38] | QI Xiangyu, XIE Tinghao, LI Yiming, et al. Revisiting the Assumption of Latent Separability for Backdoor Defenses[EB/OL]. (2023-02-02) [2025-04-29]. https://openreview.net/pdf?id=_wSHsgrVali. |
| [39] | TANG Di, WANG Xiaofeng, TANG Haixu, et al. Demon in the Variant: Statistical Analysis of DNNs for Robust Backdoor Contamination Detection[C]// USENIX. 30th USENIX Security Symposium (USENIX Security ’21). Berkeley: USENIX, 2021: 1541-1558. |
| [40] | WANG Bolun, YAO Yuanshun, SHAN S, et al. Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks[C]// IEEE. 2019 IEEE Symposium on Security and Privacy (SP). New York: IEEE, 2019: 707-723. |
| [41] | LI Yige, LYU Xixiang, KOREN N, et al. Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks[EB/OL]. (2021-01-27) [2025-04-29]. https://arxiv.org/pdf/2101.05930. |
| [42] | GAO Kuofeng, BAI Yang, GU Jindong, et al. Backdoor Defense via Adaptively Splitting Poisoned Dataset[C]// IEEE. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2023: 4005-4014. |
| [43] | MIRONOV I, TALWAR K, ZHANG Li. Rényi Differential Privacy of the Sampled Gaussian Mechanism[EB/OL]. (2021-01-27) [2025-04-29]. https://arxiv.org/pdf/2101.05930. |
| [44] | ZENG Yi, PARK W, MAO Z M, et al. Rethinking the Backdoor Attacks’ Triggers: A Frequency Perspective[C]// IEEE. 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE, 2021: 16473-16481. |
| [45] | AL-KADER-HAMMOUD H A, BIBI A, TORR P H S, et al. Don't FREAK Out: A Frequency-Inspired Approach to Detecting Backdoor Poisoned Samples in DNNs[C]// IEEE. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2023: 2338-2345. |
| [46] | CHEN Ting, KORNBLITH S, NOROUZI M, et al. A Simple Framework for Contrastive Learning of Visual Representations[C]// IMLS. The 37th International Conference on Machine Learning. Brookline: JMLR, 2020: 1597-1607. |
| [47] | COHEN J, ROSENFELD E, KOLTER Z. Certified Adversarial Robustness via Randomized Smoothing[C]// IMLS. The 36th International Conference on Machine Learning. Brookline: JMLR, 2019: 1310-1320. |
| [48] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep Residual Learning for Image Recognition[C]// IEEE. IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 770-77. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||