Netinfo Security ›› 2024, Vol. 24 ›› Issue (3): 352-362.doi: 10.3969/j.issn.1671-1122.2024.03.002
Previous Articles Next Articles
ZHONG Jing(), FANG Bing, ZHU Jiang
Received:
2024-01-11
Online:
2024-03-10
Published:
2024-04-03
Contact:
ZHONG Jing
E-mail:2351412379@qq.com
CLC Number:
ZHONG Jing, FANG Bing, ZHU Jiang. Recent Research of Feature Selection Algorithms Based on Sparse Matrix Structure[J]. Netinfo Security, 2024, 24(3): 352-362.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2024.03.002
特征选择算法类型 | 具体 模型 | 是否考虑噪声影响 | 是否考虑视图间的联系 | 是否拆分视图求解 | 算法复杂度 | |
---|---|---|---|---|---|---|
传统特征选择算法 | SMART | 未考虑噪声 | 否 | 否 | & O(c({{d}^{3}}+{{d}^{2}}n+ \\ & d({{n}^{2}}+n+c))) \\ \end{align}$ | 高 |
基于l2,1范数损失的特征选择 | RFS | 降低噪声影响 | 否 | 否 | 高 | |
基于Capped范数损失的特征选择 | SCM | 去除离群点 | 否 | 否 | & O({{d}^{3}}+{{d}^{2}}n+ \\ & d({{n}^{2}}+c+nc)) \\ \end{align}$ | 高 |
基于G1, G2,1范数损失的多视图特征选择 | MVML | 不考虑噪声 | 是 | 否 | & O({{d}^{3}}+{{d}^{2}}n+ \\ & c)+d(c+nc)) \\ \end{align}$ | 高 |
基于视图加权的多视图特征选择 | VWRFS | 降低噪声影响 | 是 | 是 | 低 | |
基于视图自加权的多视图特征选择 | ADVW | 去除离群点 | 是 | 是 | 低 | |
基准算法(不选择特征) | Allfea | — | — | — | — | — |
[1] | LIU Xinwang. Research on the Basic Theory and Methods of Multi View Learning[J]. Basic Science in China, 2022, 24(3): 27-34. |
刘新旺. 多视图学习的基础理论和方法研究[J]. 中国基础科学, 2022, 24(3): 27-34. | |
[2] | YANG Yi, ZOU Yunjin. Coming of a Big Data Age? Introducing a Latest Dimension Reduction Technique for Public Management: Data Visualization[J]. Chinese Administrative Management, 2022, 1: 105-113. |
杨一, 邹昀瑾. 以机器学习应对信息“爆炸”时代:公共管理研究的降维可视化探析[J]. 中国行政管理, 2022, 1:105-113. | |
[3] |
ZHU Pengfei, XU Qian, HU Qinghua, et al. Co-Regularized Unsupervised Ueature Selection[J]. Neurocomputing, 2018, 275: 2855-2863.
doi: 10.1016/j.neucom.2017.11.061 URL |
[4] | SALAU A O, JAIN S. Feature Extraction:A Survey of the Types, Techniques, Applications[C]// IEEE. 2019 International Conference on Signal Processing and Communication (ICSC). New York: IEEE, 2019: 158-164. |
[5] | PETER M, MINOI J, HIPINY I. 3D Face Recognition Using Kernel-Based PCA Approach[J]. Lecture Notes in Electrical Engineering, 2019, 481: 77-86. |
[6] |
BERNSTEIN R, OSADCHY M, KEREN D, et al. LDA Classifier Monitoring in Distributed Streaming Systems[J]. Journal of Parallel and Distributed Computing, 2019, 123: 156-167.
doi: 10.1016/j.jpdc.2018.09.017 |
[7] | HUANG Yuhang, SONG You, WANG Baohui. Application of Improved Forest Optimized Feature Selection Algorithm in Credit Evaluation[J]. Computer Science, 2023, 50(S1): 531-536. |
黄宇航, 宋友, 王宝会. 改进的森林优化特征选择算法在信用评估中的应用[J]. 计算机科学, 2023, 50(S1):531-536. | |
[8] | HUANG Xianliang. Application of Feature Selection Method in Dam Deformation Prediction: Taking Encapsulated Feature Selection Method Based on Genetic Algorithm as an Example[J]. Yangtze River Information and Communication, 2023, 36(4): 140-143. |
黄先亮. 特征选择方法在大坝变形预测中的应用研究——以基于遗传算法的封装式特征选择方法为例[J]. 长江信息通信, 2023, 36(4): 140-143. | |
[9] | GENG Huantong, DAI Zhongbin, SHEN Yang. Application of Feature Selection Method Based on Genetic Algorithm in Short-Term Heavy Precipitation Forecast[J]. Meteorological Science, 2023, 43(1): 126-134. |
耿焕同, 戴中斌, 沈阳. 基于遗传算法的特征选择方法在短时强降水预报中的应用[J]. 气象科学, 2023, 43(1):126-134. | |
[10] | LI Yonghong, WANG Ying, LI Laquan, et al. Application of an Improved Feature Selection Algorithm in E-Mail Filtering[J]. Computer Science, 2022, 49(S2): 740-744. |
李永红, 汪盈, 李腊全, 等. 一种改进的特征选择算法在邮件过滤中的应用[J]. 计算机科学, 2022, 49(S2):740-744. | |
[11] |
PARLAK B, UYSAL A K. A Novel Filter Feature Selection Method for Text Classification: Extensive Feature Selector[J]. Journal of Information Science, 2023, 49(1): 59-78.
doi: 10.1177/0165551521991037 URL |
[12] | KIRA K, RENDELL L A. The Feature Selection Problem: Traditional Methods and a New Algorithm[C]// AAAI. Procceedings of the 9th National Conference on Artificial Intelligence. Menlo Park: AAAI, 1992: 129-134. |
[13] |
VOMMI A M, BATTULA T K. A Hybrid Filter-Wrapper Feature Selection Using Fuzzy KNN Based on Bonferroni Mean for Medical Datasets Classification: A COVID-19 Case Study[J]. Expert Systems with Applications, 2023, 218: 119612.
doi: 10.1016/j.eswa.2023.119612 URL |
[14] |
YOUSEF M, OZDEMIR F, JABER A, et al. PriPath: Identifying Dysregulated Pathways from Differential Gene Expression via Grouping, Scoring, and Modeling with an Embedded Feature Selection Approach[J]. BMC Bioinformatics, 2023, 24(1): 1-24.
doi: 10.1186/s12859-022-05124-9 |
[15] | ORENDER J, ZUBAIR M, SUN Jiangwen. LASSO Logic Engine: Harnessing the Logic Parsing Capabilities of the LASSO Algorithm for Longitudinal Feature Learning[C]// IEEE. 2022 IEEE International Conference on Big Data. New York: IEEE, 2022: 309-318. |
[16] | WANG Lei, ZHAO Jing, ZHANG Yuxin. Ridge-Regression Echo State Network for Effluent Ammonia Nitrogen Prediction. 2022 China Automation Congress (CAC)[C]// ACM. 2022 China Automation Congress (CAC). New York: ACM, 2022: 6509-6512. |
[17] | WANG Hua, NIE Feiping, HUANG Heng, et al. Sparse Multi-Task Regression and Feature Selection to Identify Brain Imaging Predictors for Memory Performance[C]// IEEE. IEEE International Conference on Computer Vision. New York: IEEE, 2011: 557-562. |
[18] |
HE Wei, CHENG Xiaohui, HU Rongyao, et al. Feature Self-Representation Based Bypergraph Unsupervised Feature Selection via Low-Rank Representation[J]. Neurocomputing, 2017, 253: 127-134.
doi: 10.1016/j.neucom.2016.10.087 URL |
[19] |
WANG Shiping, WANG Han. Unsupervised Feature Selection via Low-Rank Approximation and Structure Learning[J]. Knowledge-Based Systems, 2017, 124: 70-79.
doi: 10.1016/j.knosys.2017.03.002 URL |
[20] |
ZHANG Rui, NIE Feiping, LI Xuelong. Self-Weighted Supervised Discriminative Feature Selection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(8): 3913-3918.
doi: 10.1109/TNNLS.2017.2740341 pmid: 28910778 |
[21] | OBOZINSKI G, TASKAR B, JORDAN M. Multi-Task Feature Selection[D]. Berkeley: UC Berkeley, 2006. |
[22] | LUO Dijun, DING C, HUANG Heng. Towards Structural Sparsity:An Explicit l2/l0 Approach[C]// IEEE. The 10th IEEE International Conferenceon Data Mining. New York: IEEE, 2010: 14-17. |
[23] |
TURLACH B, VENABLES W, WRIGHT S. Simultaneous Variable Selection[J]. Technometrics, 2005, 47(3): 349-363.
doi: 10.1198/004017005000000139 URL |
[24] | QUATTONI A, COLLINS M, DARRELL T. Transfer Learning for Image Classification with Sparse Prototype Representations[C]// IEEE. The 2008 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2008: 2300-2307. |
[25] | ZHOU Yang, JIN R, HOI S. Exclusive Lasso for Multi-Task Feature Selection[J]. Journal of Machine Learning Research, 2010, 9: 988-995. |
[26] | ZHENG Wei, YAN Hui, YANG Jian. Robust Unsupervised Feature Selection by Nonnegative Sparse Subspace Learning[J]. Nuerocomputing, 2019, 334: 156-171. |
[27] | NIE Feiping, HUANG Heng, CAI Xiao, et al. Efficient and Robust Feature Selection via Joint L2,1 Norm Minimization[C]// ACM. The 24th Annual Conference on Neural Information Processing Systems. New York: ACM, 2010: 1813-1821. |
[28] | CAI Xiao, NIE Feiping, HUANG Heng. Exact Top-K Feature Selection via L2,0 -Norm Constraint[C]// IEEE. International Joint Conference on Artificial Intelligence. New York: IEEE, 2013: 1240-1246. |
[29] |
WANG Xiaodong, ZHANG Xu, ZENG Zhiqiang, et al. Unsupervised Spectral Feature Selection with L1 -Norm Graph[J]. Neurocomputing, 2016, 200: 47-54.
doi: 10.1016/j.neucom.2016.03.017 URL |
[30] |
DU Shiqiang, MA Yide. Robust Unsupervised Feature Selection via Matrix Factorization[J]. Neurocomputing, 2017, 241: 115-127.
doi: 10.1016/j.neucom.2017.02.034 URL |
[31] | WANG Feng, RAO Qi, ZHANG Yongquan, et al. Robust Sparse Subspace Learning for Unsupervised Feature Selection[C]// IEEE. The 2016 International Joint Conference on Neural Networks. New York: IEEE, 2016: 4205-4212. |
[32] |
TANG Chang, LIU Xinwang, LI Miaomiao, et al. Robust Unsupervised Feature Selection via Dual Self-Representation and Manifold Regularization[J]. Knowledge-Based Systems, 2018, 145: 109-120.
doi: 10.1016/j.knosys.2018.01.009 URL |
[33] | GAO Hongchang, NIE Feiping, CAI Weidong, et al. Robust Capped Norm Nonnegative Matrix Factorization[C]// ACM. The 24th ACM International Conference on Information and Knowledge Management. New York: ACM, 2015: 871-880. |
[34] | LAN Gongmin, HOU Chenping, YI Dongyun. Robust Feature Selection via Simultaneous Capped l2norm and L2,1 Norm Minimization[C]// IEEE. The 2016 IEEE International Conference on Big Data Analysis. New York: IEEE, 2016: 1-5. |
[35] |
LAN Gongmin, HOU Chenping, NIE Feiping, et al. Robust Feature Selection via Simultaneous Sapped Norm and Sparse Regularizer Minimization[J]. Neurocomputing, 2018, 283: 228-240.
doi: 10.1016/j.neucom.2017.12.055 URL |
[36] |
ZHONG Jing, WANG Nan, LIN Qiang, et al. Weighted Feature Selection via Discriminative Sparse Multi-View Learning[J]. Knowledge-Based Systems, 2019, 178: 132-148.
doi: 10.1016/j.knosys.2019.04.024 |
[37] | WANG Zhi, ZHONG Jing, CHEN Yiming, et al. Sparse Robust Multiview Feature Selection via Adaptive Weighting Strategy[J]. International Journal of Machine Learning and Cybernetics, 2022: 1387-1408. |
[38] |
WANG Hua, NIE Feiping, HUANG Heng, et al. Identifying Disease Sensitive and Quantitative Trait-Relevant Biomarkers From Multidimensional Heterogeneous Imaging Genetics Data via Sparse Multimodal Multitask Learning[J]. Bioinformatics, 2012, 28(12): I127-I136.
doi: 10.1093/bioinformatics/bts228 URL |
[39] |
WANG Hua, NIE Feiping, HUANG Heng, et al. Identifying Quantitative Trait Loci via Group Sparse Multitask Regression and Feature Selection: An Imaging Genetics Study of the ADNI Cohort[J]. Bioinformatics, 2012, 28(2): 229-237.
doi: 10.1093/bioinformatics/btr649 URL |
[40] | WANG Hua, NIEFeiping, HUANGHeng. Multi-View Clustering and Feature Learning via Structured Sparsity[C] // IEEE. The International Conference on Machine Learning. New York: IEEE, 2013: 352-360. |
[41] | WANG Hua, NIE Feiping, HUANG Heng, et al. Heterogeneous Visual Features Fusion via Sparse Multimodal Machine[C]// IEEE. The Computer Vision and Pattern Recognition on IEEE. New York: IEEE, 2013: 3097-3102. |
[42] |
ZHANG Qian, TIAN Yuan, YANG Yiping, et al. Automatic Spatial-Spectral Feature Selection for Hyperspectral Image via Discriminative Sparse Multimodal Learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 53(1): 261-279.
doi: 10.1109/TGRS.2014.2321405 URL |
[43] |
ZHU Xiaofeng, LI Xuelong, ZHANG Shichao. Block-Row Sparse Multiview Multilabel Learning for Image Classification[J]. IEEE Transactions on Cybernetics, 2016, 46(2): 450-461.
doi: 10.1109/TCYB.2015.2403356 pmid: 25730838 |
[44] |
LI Yangxi, SHI Xin, DU Cuilan, et al. Manifold Regularized Multi-View Feature Selection for Social Image Annotation[J]. Neurocomputing, 2016, 204: 135-141.
doi: 10.1016/j.neucom.2015.07.151 URL |
[45] | XU Yumeng, WANG Changdong, LAI Jianhuang. Weighted Multi-View Clustering with Feature Selection[J]. Pattern Recongition, 2016, 53: 25-35. |
[46] | SHI Caijuan, AN Gaoyun, ZHAO Ruizhen, et al. Multiview Hessian Semisupervised Sparse Feature Selection for Multimedia Analysis[J]. IEEE Transactiona on Circuits and Systems for Video Technology, 2017, 27(9): 1947-1961. |
[47] |
WANG Nan, XUE Yiming, LIN Qiang, et al. Structured Sparse Multi-View Feature Selection Based on Weighted Hinge Loss[J]. Multimedia Tools and Applications, 2019, 78(11): 15455-15481.
doi: 10.1007/s11042-018-6937-x |
[48] |
SHI Caijuan, DUAN Changyu, GU Zhibin, et al. Semi-Supervised Feature Selection with Strctured Multi-View Sparse Regularization[J]. Neurocomputing, 2019, 330: 412-424.
doi: 10.1016/j.neucom.2018.10.027 |
[49] |
LIN Qiang, XUE Yiming, WEN Juan, et al. A Sharing Multi-View Feature Selection Method via Alternating Direction Method of Multipliers[J]. Neurocomputing, 2019, 333: 124-134.
doi: 10.1016/j.neucom.2018.12.043 |
[50] |
HUANG Shudong, REN Yazhou, XU Zenglin. Robust Multi-View Data Clustering with Multi-View Capped-Norm K-Means[J]. Neurocomputing, 2018, 311: 197-208.
doi: 10.1016/j.neucom.2018.05.072 URL |
[51] | LIN Qiang. Supervised Multi-View Feature Selection Via Maximum Margin Criterion Joint Distributed Optimization[C]// IEEE. 2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS). New York: IEEE, 2022: 138-142. |
[52] | LIU Hongfu, MAO Haiyi, FU Yun. Robust Multi-View Feature Selection[C]// IEEE. 2016 IEEE 16th International Conference on Data Mining (ICDM). New York: IEEE, 2016: 281-290. |
[53] |
XU Jinglin, HAN Junwei, NIE Feiping, et al. Re-Weighted Discriminatively Embedded K-Means for Multiview Clustering[J]. IEEE Transactions on Image Processing, 2017, 26(6): 3016-3027.
doi: 10.1109/TIP.2017.2665976 pmid: 28186894 |
[54] | WANGILA K W, GAO Ke, ZHU Pengfei, et al. Mixed Sparsity Regularized Multi-View Unsupervised Feature Selection[C]// IEEE. The International Conference on Image Processing. New York: IEEE, 2017: 1930-1934. |
[55] | NIE Feiping, LI Jing, LI Xuelong. Convex Multiview Semi-Supervised Classification[J]. IEEE Trainsactions on Image Processing, 2017, 26(12): 5718-5729. |
[56] |
YANG Muli, CHENG Deng, NIE Feiping. Adaptive-Weighting Discriminative Regression for Multi-View Classification[J]. Pattern Recognition, 2019, 88: 236-245.
doi: 10.1016/j.patcog.2018.11.015 |
[57] | HE Tian. Adaptive Learning-Based Multi-View Unsupervised Feature Selection[D]. Chegndu: Southwest University of Finance and Economics, 2023. |
何添. 基于自适应学习的多视图无监督特征选择方法研究[D]. 成都: 西南财经大学, 2023. | |
[58] | LIU Yuxin, HAN Xiaohong, SONG Ke. Unsupervised Multi View Feature Selection Based on Adaptive Similarity[J]. Computer Engineering and Design, 2021, 48(11): 3158-3163. |
刘宇欣, 韩晓红, 宋可. 基于自适应相似性的无监督多视图特征选择[J]. 计算机工程与设计, 2021, 48(11):3158-3163. | |
[59] | GUI Jie. Multi-View Feature Selection for Heterogeneous Face Recognition[C]// IEEE. 2018 IEEE International Conference on Data Mining (ICDM). New York: IEEE, 2018: 983-988. |
[60] | CHEN Xi, LIU Wei, SHAO Guofang, et al. Semi-Supervised Multiview Feature Selection with Label Learning for VHR Remote Sensing Images[C]// IEEE. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). New York: IEEE, 2016: 2372-2375. |
[61] | WANG Yu, ZHAO Xiaoyan, YANG Xinli, et al. The Confidence Interval of AUC Metric Based on K-Fold Cross Validation Beta Distribution[J]. System Science and Mathematics, 2020, 49(10): 1564-1577. |
王钰, 赵晓燕, 杨信丽, 等. 基于K折交叉验证Beta分布的AUC度量的置信区间[J]. 系统科学与数学, 2020, 49(10):1564-1577. | |
[62] | LIU Jiaxing. Support Vector Regression Based on Grid Search Hyperparameter Optimization[J]. Scientific and Technological Innovation, 2022(13): 71-75. |
刘佳星. 基于网格搜索超参数优化的支持向量回归[J]. 科学技术创新, 2022(13):71-75. |
[1] | ZHANG Yuchen, ZHANG Yawen, WU Yue, LI Cheng. A Method of Feature Extraction for Network Traffic Based on Time-Frequency Diagrams and Improved E-GraphSAGE [J]. Netinfo Security, 2023, 23(9): 12-24. |
[2] | LI Chenwei, ZHANG Hengwei, GAO Wei, YANG Bo. Transferable Image Adversarial Attack Method with AdaN Adaptive Gradient Optimizer [J]. Netinfo Security, 2023, 23(7): 64-73. |
[3] | TAN Liuyan, RUAN Shuhua, YANG Min, CHEN Xingshu. Educational Data Classification Based on Deep Learning [J]. Netinfo Security, 2023, 23(3): 96-102. |
[4] | LI Sicong, WANG Jian, SONG Yafei, HUANG Wei. Malicious Code Classification Method Based on BiTCN-DLP [J]. Netinfo Security, 2023, 23(11): 104-117. |
[5] | SUN Yongqi, SONG Zewen, ZHU Weiguo, ZHAO Sicong. Image Classification Method Based on Secure Multiparty Computation [J]. Netinfo Security, 2023, 23(11): 27-37. |
[6] | LIU Xiangyu, LU Tianliang, DU Yanhui, WANG Jingxiang. Lightweight IoT Intrusion Detection Method Based on Feature Selection [J]. Netinfo Security, 2023, 23(1): 66-72. |
[7] | WEI Songjie, LI Chenghao, SHEN Haotong, ZHANG Wenzhe. Research and Application of Network Anonymous Traffic Detection Method Based on Deep Forest [J]. Netinfo Security, 2022, 22(8): 64-71. |
[8] | ZHENG Yaohao, WANG Liming, YANG Jing. A Defense Method against Adversarial Attacks Based on Neural Architecture Search [J]. Netinfo Security, 2022, 22(3): 70-77. |
[9] | LIU Jiayin, LI Fujuan, MA Zhuo, XIA Lingling. Malware Classification Method Based on Multi-Scale Convolutional Neural Network [J]. Netinfo Security, 2022, 22(10): 31-38. |
[10] | WEN Weiping, HU Yezhou, ZHAO Guoliang, CHEN Xiarun. Design and Implementation of an Abnormal IP Identification System Based on Traffic Feature Classification [J]. Netinfo Security, 2021, 21(8): 1-9. |
[11] | LI Qun, DONG Jiahan, GUAN Zhitao, WANG Chao. A Clustering and Classification-based Malicious Attack Detection Method for Internet of Things [J]. Netinfo Security, 2021, 21(8): 82-90. |
[12] | XU Guotian*, SHEN Yaotong. Multiple Classification Detection Method for Malware Based on XGBoost and Stacking Fusion Model [J]. Netinfo Security, 2021, 21(6): 52-62. |
[13] | GUO Xuanzhen, PAN Zulie, SHEN Yi, CHEN Yuanchao. DNS Rebinding Detection Technology Based on Passive DNS Data Analysis [J]. Netinfo Security, 2021, 21(3): 87-95. |
[14] | LIU Hong, ZHANG Yuejin, ZHAO Wenxia, YANG Mu. A Security Management Framework for Data Sensitivity and Multidimensional Classification [J]. Netinfo Security, 2021, 21(10): 48-53. |
[15] | ZHU Chaoyang, ZHOU Liang, ZHU Yayun, LIN Qingwen. Malicious Code Visual Classification Algorithm Based on Behavior Knowledge Graph Sieve [J]. Netinfo Security, 2021, 21(10): 54-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||