[1] |
DINGLEDINE R, MATHEWSON N, SYVERSON P. Tor: The Second-Generation Onion Router[EB/OL].[ 2022-04-01]. https://xueshu.baidu.com/usercenter/paper/show?paperid=2ebc60ffb4dcd902c75ec2184eaf3e20.
|
[2] |
SAPUTRA F A, NADHORI I U, BARRY B F. Detecting and Blocking Onion Router Traffic Using Deep Packet Inspection>:[C]// IEEE. International Electronics Symposium (IES). New York: IEEE, 2016283-288.
|
[3] |
LASHKARI A H, DRAPER-GIL G, MAMUN M S I, et al. Characterization of Tor Traffic Using Time Based Features[EB/OL]. (2017-09-29) [2022-04-01] https://www.researchgate.net/publication/314521450_Characterization_of_Tor_Traffic_using_Time_based_Features.
|
[4] |
MADHUKAR A, WILLIAMSON C. A Longitudinal Study of P2P Traffic Classification[C]// IEEE. International Symposium on Modeling, Analysis, and Simulation. New York: IEEE, 2006: 179-188.
|
[5] |
MOORE A W, PAPAGIANNAKI K. Toward the Accurate Identification of Network Applications[C]// Springer. International Workshop on Passive and Active Network Measurement. Berlin: Springer, 2005: 41-54.
|
[6] |
LIU X B, YANG J H, XIE G G, et al. Automated Mining of Packet Signatures for Traffic Identification at Application Layer with Apriori Algorithm[EB/OL]. [ 2022-04-01]. https://xueshu.baidu.com/usercenter/paper/show?paperid=94fc3e9c8f42718fc085cc0e299e78db&site=xueshu_se&hitarticle=1.
|
[7] |
ESTE A, GRINGOLI F, SALGARELLI L. Support Vector Machines for TCP Traffic Classification[J]. Computer Networks, 2009, 53(14): 2476-2490.
doi: 10.1016/j.comnet.2009.05.003
URL
|
[8] |
SAHU S, MEHTRE B M. Network Intrusion Detection System Using J48 Decision Tree[C]// IEEE. International Conference on Advances in Computing, Communications and Informatics (ICACCI). New York: IEEE, 2015: 2023-2026.
|
[9] |
HELMAN P, VEROFF R, ATLAS S R, et al. A Bayesian Network Classification Methodology for Gene Expression Data[J]. Journal of Computational Biology, 2004, 11(4): 581-615.
doi: 10.1089/cmb.2004.11.581
URL
|
[10] |
DOGRU N, SUBASI A. Traffic Accident Detection Using Random Forest Classifier[C]// IEEE. 15th Learning and Technology Conference (L&T). New York: IEEE, 2018: 40-45.
|
[11] |
LI Xiaoming, REN Hui, YAN Jinyao. Analysis and Research on Network Traffic Classification Algorithm Based on Machine Learning[J] Journal of Communication University of China: Natural Science Edition, 2017, 24(2): 9-14.
|
|
李晓明, 任慧, 颜金尧. 基于机器学习的网络流量分类算法分析研究[J]. 中国传媒大学学报:自然科学版, 2017, 24(2): 9-14.
|
[12] |
WANG Pan, YE Feng, CHEN Xuejiao, et al. Datanet: Deep Learning Based Encrypted Network Traffic Classification in SDN Home Gateway[J]. IEEE Access, 2018, 6: 55380-55391.
doi: 10.1109/ACCESS.2018.2872430
URL
|
[13] |
ZHOU Zhihua, FENG Ji. Deep Forest[J]. National Science Review, 2019, 6(1): 74-86.
doi: 10.1093/nsr/nwy108
|
[14] |
PANG M, TING K M, ZHAO P, et al. Improving Deep Forest by Confidence Screening[C]// IEEE. IEEE International Conference on Data Mining (ICDM). Piscataway: IEEE, 2018: 1194-1199.
|
[15] |
BLUMBERG B, DOWNIE M, IVANOV Y, et al. Integrated Learning for Interactive Synthetic Characters[C]//ACM. Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 2002: 417-426.
|
[16] |
ZHOU Zhi Hua, FENG Ji. Deep Forest: Towards An Alternative to Deep Neural Networks[EB/OL]. [ 2022-04-01]. https://xueshu.baidu.com/usercenter/paper/show?paperid=637f02600a538dc721ff4c3213ce2b7a&site=xueshu_se.
|
[17] |
MA Pengfei, WU Youxi, LI Yan, et al. DBC-Forest: Deep Forest with Binning Confidence Screening[J]. Neurocomputing, 2021(12): 112-122.
|