Netinfo Security ›› 2023, Vol. 23 ›› Issue (9): 12-24.doi: 10.3969/j.issn.1671-1122.2023.09.002
Previous Articles Next Articles
ZHANG Yuchen, ZHANG Yawen(), WU Yue, LI Cheng
Received:
2023-05-25
Online:
2023-09-10
Published:
2023-09-18
Contact:
ZHANG Yawen
E-mail:wyyw4ever@qq.com
CLC Number:
ZHANG Yuchen, ZHANG Yawen, WU Yue, LI Cheng. A Method of Feature Extraction for Network Traffic Based on Time-Frequency Diagrams and Improved E-GraphSAGE[J]. Netinfo Security, 2023, 23(9): 12-24.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2023.09.002
数据集 | 方法 | 准确率 | 精确率 | 召回率 | F1-score |
---|---|---|---|---|---|
UNSW-NB15 | 原始流量 | 60.23 | 62.89 | 60.85 | 63.11 |
时频分析模型 | 65.34 | 69.21 | 64.87 | 66.45 | |
流谱理论模型 | 76.47 | 80.11 | 77.05 | 78.55 | |
E-GraphSAGE M | 94.09 | 9606 | 96.69 | 95.19 | |
TPE-GraphSAGE | 96.96 | 97.19 | 97.22 | 95.37 | |
TPS-EGraphSAGE | 97.20 | 97.26 | 97.40 | 96.82 | |
CICIDS2017 | 原始流量 | 70.25 | 68.83 | 70.87 | 69.84 |
时频分析模型 | 72.78 | 69.23 | 72.95 | 71.37 | |
流谱理论模型 | 74.57 | 79.44 | 80.36 | 79.56 | |
E-GraphSAGE M | 94.09 | 96.06 | 96.69 | 95.19 | |
TPE-GraphSAGE | 97.20 | 97.26 | 97.40 | 96.82 | |
TPS-EGraphSAGE | 98.64 | 98.62 | 98.59 | 98.49 |
数据集 | 算法 | 每类加权F1-score | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
UNSW-NB15 | E-GraphSAGE M | 98.2 | 12.2 | 0 | 0 | 73.5 | 0 | 21.4 | 7.8 | 0 | 0 |
TPE-GraphSAGE | 99.0 | 30.5 | 22.7 | 9.4 | 53.0 | 0 | 14.4 | 26.1 | 0 | 6.8 | |
TSP-EGraphSAGE | 99.1 | 34.8 | 26.0 | 12.8 | 54.2 | 23.3 | 30.9 | 35.0 | 4.2 | 8.6 | |
CICIDS 2017 | E-GraphSAGE M | 92.3 | 94.3 | 90.1 | 66.3 | 58.2 | 90.3 | 0 | — | — | — |
TPE-GraphSAGE | 95.4 | 97.3 | 92.9 | 97.2 | 62.4 | 91.8 | 0 | — | — | — | |
TSP-EGraphSAGE | 96.6 | 98.6 | 95.1 | 98.1 | 71.8 | 94.3 | 7.6 | — | — | — |
[1] |
ZHANG Surong, BU Youjun, CHEN Bo, et al. Encrypted Traffic Classification Method Based on Multi-Layer Bidirectional SRU and Attention Model[J]. Computer Engineering, 2022, 48(11): 127-136.
doi: 10.19678/j.issn.1000-3428.0063626 |
张稣荣, 卜佑军, 陈博, 等. 基于多层双向SRU与注意力模型的加密流量分类方法[J]. 计算机工程, 2022, 48(11): 127-136.
doi: 10.19678/j.issn.1000-3428.0063626 |
|
[2] | NARGESIAN F, SAMULOWITZ H, KHURANA U, et al. Learning Feature Engineering for Classification[C]// ACM. 26th International Joint Conference on Artificial Intelligence. New York: ACM, 2017: 2529-2535. |
[3] | TANG Jiliang, ALELYANI S, LIU Huan. Feature Selection for Classification: A Review[EB/OL]. (2014-01-01)[2023-04-11]. https://www.researchgate.net/publication/288257551_Feature_selection_for_classification_A_review. |
[4] | KHAMMASSI C, KRICHEN S. A GA-LR Wrapper Approach for Feature Selection in Network Intrusion Detection[J]. Computers & Security, 2017(70): 255-277. |
[5] | PACHECO J, BENITEZ V, FÉLIX L. Anomaly Behavior Analysis for IoT Network Nodes[C]// ACM. 3rd International Conference on Future Networks and Distributed Systems. New York: ACM, 2019: 1-6. |
[6] | RATHORE M M, SAEED F, REHMAN A, et al. Intrusion Detection Using Decision Tree Model in High-Speed Environment[C]// IEEE. 2018 International Conference on Soft-Computing and Network Security (ICSNS). New York: IEEE, 2018: 1-4. |
[7] |
BENGIO Y, COURVILLE A, VINCENT P. Representation Learning: A Review and New Perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.
doi: 10.1109/TPAMI.2013.50 pmid: 23787338 |
[8] | LO W W, LAYEGHY S, SARHAN M, et al. E-GraphSAGE: A Graph Neural Network Based Intrusion Detection System for IoT[C]// IEEE. NOMS 2022 IEEE/IFIP Network Operations and Management Symposium. New York: IEEE, 2022: 1-9. |
[9] | GUO Shize, WANG Xiaojuan, HE Mingshu, et al. Research on Intelligent Monitoring Technology in Cyberspace Adversarial Defense[J]. Information Security and Communications Privacy, 2021(11): 79-94. |
郭世泽, 王小娟, 何明枢, 等. 网络空间对抗防御中的智能监测技术研究[J]. 信息安全与通信保密, 2021(11): 79-94. | |
[10] | JIANG Weiwei. Graph-Based Deep Learning for Communication Networks: A Survey[J]. Computer Communications, 2022(185): 40-54. |
[11] |
CAI Hongyun, ZHENG V W, CHANG K C C. A Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(9): 1616-1637.
doi: 10.1109/TKDE.69 URL |
[12] | XIAO Qingsai, LIU Jian, WANG Qiuyun, et al. Towards Network Anomaly Detection Using Graph Embedding[C]// Springer. Computational Science-ICCS 2020: 20th International Conference. Berlin: Springer, 2020: 156-169. |
[13] | CHEN Zhaomin, YEO C K, LEE B S, et al. Autoencoder-Based Network Anomaly Detection[C]// IEEE. 2018 Wireless Telecommunications Symposium (WTS). New York: IEEE, 2018: 1-5. |
[14] | GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural Message Passing for Quantum Chemistry[J]. International Conference on Machine Learning, 2017(70): 1263-1272. |
[15] | ABDULRAHAMAN M D, ALHASSAN J K. Ensemble Learning Approach for the Enhancement of Performance of Intrusion Detection System[C]// Elsevier. International Conference on Information and Communication Technology and Its Applications (ICTA 2018). Amsterdam: Elsevier, 2018: 1-8. |
[16] |
WANG Yifei, MO Shuang, WU Wenrui, et al. Internal-External Convolutional Networks for Network Intrusion Detection[J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(5): 94-100.
doi: 10.13190/j.jbupt.2021-007 |
王艺霏, 莫爽, 吴文睿, 等. 基于内外卷积网络的网络入侵检测[J]. 北京邮电大学学报, 2021, 44(5): 94-100.
doi: 10.13190/j.jbupt.2021-007 |
|
[17] | HAMILTON W L, YING R, LESKOVEC J. Inductive Representation Learning on Large Graphs[J]. Advances in Neural Information Processing Systems, 2017(30): 1025-1035. |
[18] | LAN Jin, LU Jiazhong, WAN Guogao, et al. E-Minbatch GraphSAGE: An Industrial Internet Attack Detection Model[EB/OL]. (2022-07-14)[2023-04-11]. https://dl.acm.org/doi/10.1155/2022/5363764. |
[19] | CHANG Liyan, BRANCO P. Graph-Based Solutions with Residuals for Intrusion Detection: the Modified E-GraphSAGE and E-ResGAT Algorithms[EB/OL]. (2021-11-26)[2023-04-11]. https://arxiv.org/abs/2111.13597. |
[20] | CAVILLE E, LO W W, LAYEGHY S, et al. Anomal-E: A Self-Supervised Network Intrusion Detection System Based on Graph Neural Networks[EB/OL]. (2022-07-14)[2023-04-11]. https://arxiv.org/abs/2207.06819. |
[21] | ZHANG Xin, JIANG Xiaolu, YU Fucai, et al. Application of Time-Frequency Analysis in Classification of P2P Flow[J]. Application Research of Computers, 2015, 32(10): 3078-3082. |
张昕, 蒋晓路, 于富财, 等. 时频分析在P2P网络流分类中的应用研究[J]. 计算机应用研究, 2015, 32(10): 3078-3082. | |
[22] | GUO Shize, LYU Renjian, HE Mingshu, et al. Application of Flow Spectrum Theory in Network Defense[J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(3): 19-25. |
郭世泽, 吕仁健, 何明枢, 等. 流谱理论及其在网络防御中的应用[J]. 北京邮电大学学报, 2022, 45(3): 19-25. | |
[23] | WANG Yingjie, XU Guangquan, LI Xing, et al. Identifying Vulnerabilities of SSL/TLS Certificate Verification in Android Apps with Static and Dynamic Analysis[EB/OL]. (2020-04-22)[2023-04-11]. https://www.sciencedirect.com/science/article/abs/pii/S016412122030087X. |
[24] | COHEN L. Time-Frequency Analysis[M]. New Jersey: Control Engineering Practice Prentice Hall, 1995. |
[25] |
COHEN L. Time-Frequency Distributions-A Review[J]. Proceedings of the IEEE, 1989, 77(7): 941-981.
doi: 10.1109/5.30749 URL |
[26] |
DURAK L, ARIKAN O. Short-Time Fourier Transform: Two Fundamental Properties and an Optimal Implementation[J]. IEEE Transactions on Signal Processing, 2003, 51(5): 1231-1242.
doi: 10.1109/TSP.2003.810293 URL |
[27] | ZHANG Dengsheng. Wavelet Transform[EB/OL]. (2019-05-14)[2023-04-11]. https://link.springer.com/chapter/10.1007/978-3-030-17989-2_2. |
[28] | ZHANG Yawen, ZHANG Yuchen, WU Yue, et al. TPE-NIDS: Uses Graph Neural Networks to Detect Malicious Traffic[C]// IEEE. 2022 4th International Conference on Frontiers Technology of Information and Computer (ICFTIC). New York: IEEE, 2022: 949-958. |
[29] | MOUSTAFA N, SLAY J. UNSW-NB15: A Comprehensive Data Set for Network Intrusion Detection Systems (UNSW-NB15 Network Data Set)[C]// IEEE. 2015 Military Communications and Information Systems Conference (MilCIS). New York: IEEE, 2015: 1-6. |
[1] | ZHAO Xiaolin, WANG Qiyao, ZHAO Bin, XUE Jingfeng. Research on Anonymous Traffic Classification Method Based on Machine Learning [J]. Netinfo Security, 2023, 23(5): 1-10. |
[2] | WEI Songjie, LI Chenghao, SHEN Haotong, ZHANG Wenzhe. Research and Application of Network Anonymous Traffic Detection Method Based on Deep Forest [J]. Netinfo Security, 2022, 22(8): 64-71. |
[3] | GU Zhaojun, HAO Jintao, ZHOU Jingxian. Classification of Malicious Network Traffic Based on Improved Bilinear Convolutional Neural Network [J]. Netinfo Security, 2020, 20(10): 67-74. |
[4] | Jian KANG, Jie WANG, Zhengxu LI, Guangda ZHANG. A Model for Anomaly Intrusion Detection with Different Feature Extraction Strategies in IoT [J]. Netinfo Security, 2019, 19(9): 21-25. |
[5] | Hui LI, Shice NI, Jia XIAO, Tianzhong ZHAO. Emotion Classification Technology for Online Video Comments on the Internet [J]. Netinfo Security, 2019, 19(5): 61-68. |
[6] | Xudong WANG, Xiangzhan YU, Hongli ZHANG. Research on Traffic Identification Technology for Unknown Protocols [J]. Netinfo Security, 2019, 19(10): 74-83. |
[7] | Weiping WEN, Jingwei LI, Yingnan JIAO, Hailin LI. A Vulnerability Detection Method Based on Random Detection Algorithm and Information Aggregation [J]. Netinfo Security, 2019, 19(1): 1-7. |
[8] | Gang LU, Ronghua GUO, Ying ZHOU, Jun WANG. Review of Malicious Traffic Feature Extraction [J]. Netinfo Security, 2018, 18(9): 1-9. |
[9] | Guihua DUAN, Zhuoxiang SHEN, Dongjie SHEN, Zhi LI. Research on a Download Link Recognition Scheme Based on Feature Extraction [J]. Netinfo Security, 2018, 18(10): 31-36. |
[10] | Shuning WEI, Xingru CHEN, Yong TANG, Hui LIU. Research on the Application of AR-HELM Algorithm in Network Traffic Classifi cation [J]. Netinfo Security, 2018, 18(1): 9-14. |
[11] | Yue QIU. Research on the Hidden Web Technology for the Network Content Security [J]. Netinfo Security, 2015, 15(9): 106-108. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||