Netinfo Security ›› 2023, Vol. 23 ›› Issue (5): 62-75.doi: 10.3969/j.issn.1671-1122.2023.05.007
Previous Articles Next Articles
CHEN Zitong, JIA Peng(), LIU Jiayong
Received:
2022-12-15
Online:
2023-05-10
Published:
2023-05-15
Contact:
JIA Peng
E-mail:pengjia@scu.edu.cn
CLC Number:
CHEN Zitong, JIA Peng, LIU Jiayong. Identification Method of Malicious Software Hidden Function Based on Siamese Architecture[J]. Netinfo Security, 2023, 23(5): 62-75.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2023.05.007
神经网络模型 | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|
BiLSTM | 58.34 % | 54.81 % | 56.93 % | 55.85 % |
CNN_LSTM | 61.04 % | 60.49 % | 61.04 % | 60.76 % |
AvRNN | 93.91 % | 93.08 % | 93.40 % | 93.24 % |
DropoutAvRNN | 92.38 % | 90.76 % | 89.93 % | 90.34 % |
textCNN | 91.94 % | 90.84 % | 90.35 % | 90.59 % |
AvCNN | 95.26 % | 93.83 % | 92.67 % | 93.20 % |
K-MAX-CNN | 96.51 % | 95.72 % | 94.76 % | 95.24 % |
K-Max-DCNN-Attention | 98.45 % | 97.95 % | 97.03 % | 97.49 % |
检测工具 算法种类 | 本文方法 | Findcrypt | IDAscope | HCD | Crypto Searcher | DRACA |
---|---|---|---|---|---|---|
ADLER32 | ○ | ● | ○ | ○ | ● | ● |
aPLib | ○ | ● | ● | ● | ● | ● |
BASE64 | ○ | ○ | ● | ○ | ○ | ● |
BLOWFISH | ○ | ○ | ○ | ○ | ○ | ○ |
CRC32 | ○ | ○ | ○ | ○ | ○ | ○ |
CRC32[poly] | ○ | ○ | ○ | ○ | ● | ● |
DES[char] | ○ | ● | ○ | ○ | ○ | ○ |
HAVAL(5 pass) | ○ | ● | ○ | ○ | ● | ● |
MD5 | ○ | ○ | ○ | ○ | ○ | ○ |
RC5/RC6 | ○ | ● | ○ | ○ | ○ | ○ |
SHA-256 | ○ | ● | ● | ○ | ○ | ● |
SHA-1 | ○ | ○ | ● | ○ | ● | ○ |
ZLIB[long] | ○ | ● | ○ | ○ | ● | ● |
ZLIB[word] | ○ | ● | ○ | ○ | ● | ● |
Big-number | ○ | ○ | ● | ● | ● | ● |
检测工具 算法种类 | 函数 数量 | 本文方案 | Findcrypt | IDAscope | HCD | Crypto Searcher |
---|---|---|---|---|---|---|
ADLER32 | 27 | 25 | 0 | 25 | 22 | 0 |
aPLib | 2 | 2 | 0 | 0 | 0 | 0 |
BASE64 | 15 | 13 | 15 | 0 | 13 | 11 |
BLOWFISH | 2 | 2 | 2 | 2 | 0 | 2 |
CRC32 | 32 | 28 | 32 | 32 | 26 | 0 |
CRC32[poly] | 3 | 3 | 3 | 3 | 1 | 0 |
DES[char] | 9 | 7 | 0 | 4 | 2 | 2 |
HAVAL(5 pass) | 10 | 10 | 1 | 2 | 10 | 0 |
MD5 | 30 | 30 | 30 | 3 | 26 | 28 |
RC5/RC6 | 4 | 3 | 0 | 4 | 4 | 4 |
SHA-256 | 2 | 0 | 0 | 0 | 0 | 0 |
SHA-1 | 3 | 2 | 2 | 0 | 0 | 0 |
ZLIB[long] | 8 | 6 | 0 | 5 | 0 | 0 |
ZLIB[word] | 10 | 8 | 0 | 9 | 0 | 0 |
Big-number | 11 | 7 | 6 | 0 | 0 | 0 |
其余函数 | 32 | 32 | 32 | 32 | 32 | 32 |
总计 | 200 | 178 | 123 | 121 | 136 | 79 |
准确率 | — | 89% | 61.5% | 60.5% | 68% | 39.5% |
[1] | LI Jizhong. Research on Key Technology of Cryptography Algorithm Recognition and Analysis[D]. Zhengzhou: PLA Information Engineering University, 2014. |
李继中. 密码算法识别与分析关键技术研究[D]. 郑州: 解放军信息工程大学, 2014. | |
[2] | CAI Jianzhang, WEI Qiang, ZHU Yuefei. Identification of Encrypted Function in Malicious Software[J]. Journal of Computer Applications, 2013, 33(11): 3239-3243. |
蔡建章, 魏强, 祝跃飞. 识别恶意软件中的加密函数[J]. 计算机应用, 2013, 33(11): 3239-3243. | |
[3] | WRIGHT J L, MANIC M. Neural Network Approach to Locating Cryptography in Object Code[C]// IEEE. 2009 IEEE Conference on Emerging Technologies & Factory Automation. New York: IEEE, 2009: 1-4. |
[4] | AIGNER A. Falke-Mc: A Neural Network Based Approach to Locate Cryptographic Functions in Machine Code[C]// ACM. Proceedings of the 13th International Conference on Availability, Reliability and Security. New York: ACM, 2018: 1-8. |
[5] | CHUA Z L, SHEN S, SAXENA P, et al. Neural Nets Can Learn Function Type Signatures From Binaries[C]// ACM. USENIX Security Symposium. New York: ACM, 2017: 99-116. |
[6] | DING S H H, FUN B C M, CHARLAND P. Asm2vec: Boosting Static Representation Robustness for Binary Clone Search Against Code Obfuscation and Compiler Optimization[C]// IEEE. 2019 IEEE Symposium on Security and Privacy (SP). New York: IEEE, 2019: 472-489. |
[7] | XU Xiaojun, LIU Chang, FENG Qian, et al. Neural Network-Based Graph Embedding for Cross-Platform Binary Code Similarity Detection[C]// ACM. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017: 363-376. |
[8] | MASSARELLI L, DI LUNA G A, PETRONI F, et al. SAFE: Self-Attentive Function Embeddings for Binary Similarity[C]// Springer. Detection of Intrusions and Malware, and Vulnerability Assessment:16th International Conference, DIMVA 2019. Heidelberg: Springer, 2019: 309-329. |
[9] | HARVEY I. Cipher Hunting: How to Find Cryptographic Algorithms in Large Binaries[J]. NCipher Corporation Ltd. 2001: 46-51. |
[10] | CABALLERO J, YIN H, LIANG Z, et al. Polyglot: Automatic Extraction of Protocol Message Format Using Dynamic Binary Analysis[C]// ACM. Proceedings of the 14th ACM Conference on Computer and Communications Security. New York: ACM, 2007: 317-329. |
[11] | CABALLERO J, JOHNSON N M, MCCAMANT S, et al. Binary Code Extraction and Interface Identification for Security Applications[R]. Berkeley: California University Berkeley of Electrical Engineering and Computer Science, UCB/EECS-2009-133, 2009. |
[12] | LIN Z, JIANG X, XU D, et al. Automatic Protocol Format Reverse Engineering through Context-Aware Monitored Execution[C]// NDSS. 15th Annual Network & Distributed System Security Symposium. San Diego: ISOC, 2008: 1-15. |
[13] | LI Jizhong, JIANG Liehui, YIN Qing, et al. Cryptogram Algorithm Recognition Technology Based on Bayes Decision-Making[J]. Computer Engineering, 2008, 34(20): 159-160. |
李继中, 蒋烈辉, 尹青, 等. 基于 Bayes 决策的密码算法识别技术[J]. 计算机工程, 2008, 34(20): 159-160. | |
[14] | LI Jizhong. Research on Technology of Cryptogram Algorithm Recognition Based on Similarity Decision-Making[D]. Zhenghou: PLA Information Engineering University, 2009. |
李继中. 基于相似性判定的密码算法识别技术研究[D]. 郑州: 解放军信息工程大学, 2009. | |
[15] | LUTZ N. Towards Revealing Attacker’s Intent by Automatically Decrypting Network Traffic[EB/OL]. (2008-08-01)[2022-09-14]. https://pub.tik.ee.ethz.ch/students/2008-FS/MA-2008-08. |
[16] | WANG Zhi, JIANG Xexian, CUI Weidong, et al. ReFormat: Automatic Reverse Engineering of Encrypted Messages[C]// Springer. Computer Security-ESORICS 2009: 14th European Symposium on Research in Computer Security. Heidelberg: Springer, 2009: 200-215. |
[17] | LIU T M, JIANG L, HE H, et al. Researching on Cryptographic Algorithm Recognition Based on Static Characteristic-Code[C]// Springer. Security Technology:International Conference, SecTech 2009, Held as Part of the Future Generation Information Technology Conference, FGIT 2009. Heidelberg: Springer, 2009: 140-147. |
[18] | SNAKER. KANAL-Krypto Analyzer for PEiD[EB/OL]. (2019-04-18)[2022-03-26]. http://www.dcs.fmph.uniba.sk/zri/6.prednaska/tools/PEiD/plugins/kanal.htm. |
[19] | X3CHUN. Crypto Searcher[EB/OL]. (2019-05-31)[2022-07-08]. http://quequero.org/uicwiki/images/Cryptosearcher_2004_05_19.zip. |
[20] | PARADOX/AT4RE. Hash Crypto Detector[EB/OL]. (2019-11-21)[2022-07-10]. https://github.com/felixgr/kerckhoffs/blob/master/static_tools/HCD.rar. |
[21] | GUILFANOVER. Findcrypt2[EB/OL]. (2018-10-05)[2022-07-02]. http://www.hexblog.com/?p=28. |
[22] | PLOHMANN D. IDAscope[EB/OL]. (2020-09-23)[2022-07-02]. https://bitbucket.org/daniel_plohmann/simplifire.idascope/. |
[23] | DRAFT. Draft Crypto Analyzer[EB/OL]. (2019-05-16)[2022-07-08]. http://www.literatecode.com/draca. |
[24] | GROBERT F, WILLEMS C, HOLZ T. Automated Identification of Cryptographic Primitives in Binary Programs[C]// Springer. Recent Advances in Intrusion Detection:14th International Symposium, RAID 2011. Heidelberg: Springer, 2011: 41-60. |
[25] | ZHAO R, GU D, LI J, et al. Detection and Analysis of Cryptographic Data Inside Software[C]// Springer. Information Security:14th International Conference. Heidelberg: Springer, 2011: 182-196. |
[26] | LE Q, MIKOLOV T. Distributed Representations of Sentences and Documents[C]// ACM. International Conference on Machine Learning. New York: ACM, 2014: 1188-1196. |
[27] | DAI H, DAI B, SONG L. Discriminative Embeddings of Latent Variable Models for Structured Data[C]// ACM. International Conference on Machine Learning. New York: ACM, 2016: 2702-2711. |
[28] | MASSARELLI L, DI LUNA G A, PETRONI F, et al. Investigating Graph Embedding Neural Networks with Unsupervised Features Extraction for Binary Analysis[C]// NDSS. Proceedings of the 2nd Workshop on Binary Analysis Research (BAR). San Diego: ISOC, 2019: 1-11. |
[29] | SHIN E C R, SONG D, MOAZZEZI R. Recognizing Functions in Binaries with Neural Networks[C]// ACM. 24th {USENIX} Security Symposium ({USENIX} Security 15). New York: ACM, 2015: 611-626. |
[30] | MA Jun, LI Congying. Evolution and Algorithm of Pre-trained Word Embedding Technology[J]. Chinese Journal of Medical Library and Information Science, 2022, 30(12): 31-39. |
马俊, 李聪颖. 预训练词嵌入技术的演化与算法[J]. 中华医学图书情报杂志, 2022, 30(12): 31-39. | |
[31] | MIKOLOV T, CHEN K, CORRADO G, et al. Efficient Estimation of Word Representations in Vector Space[EB/OL]. (2013-09-07)[2022-09-14]. https://arxiv.org/abs/1301.3781. |
[32] | MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed Representations of Words and Phrases and Their Compositionality[J]. Advances in Neural Information Processing Systems, 2013. |
[33] | KALCHBRENNER N, GREFENSTETTE E, BLUNSOM P. A Convolutional Neural Network for Modelling Sentences[EB/OL]. (2014-04-08)[2022-09-14]. https://arxiv.org/abs/1404.2188. |
[34] | TOMPSON J, GOROSHIN R, JAIN A, et al. Efficient Object Localization Using Convolutional Networks[C]// IEEE. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2015: 648-656. |
[35] | FELBO B, MISLOVE A, SOGAARD A, et al. Using Millions of Emoji Occurrences to Learn Any-Domain Representations for Detecting Sentiment, Emotion and Sarcasm[EB/OL]. (2017-10-07)[2022-09-14]. https://arxiv.org/abs/1708.00524. |
[36] | HADSELL R, CHOPRA S, LECUN Y. Dimensionality Reduction by Learning An Invariant Mapping[C]// IEEE. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06). New York: IEEE, 2006: 1735-1742. |
[37] | VX. VX Heaven Virus Collection[EB/OL]. (2019-05-13)[2021-06-06]. http://academictorrents.com/details/34ebe49a48aa532deb9c0dd08a08a017aa04d810. |
[1] | ZHAO Xiaolin, WANG Qiyao, ZHAO Bin, XUE Jingfeng. Research on Anonymous Traffic Classification Method Based on Machine Learning [J]. Netinfo Security, 2023, 23(5): 1-10. |
[2] | ZHAO Caidan, CHEN Jingqian, WU Zhiqiang. Automatic Modulation Recognition Algorithm Based on Multi-Channel Joint Learning [J]. Netinfo Security, 2023, 23(4): 20-29. |
[3] | ZHANG Yujian, LIU Daifu, TONG Fei. Reentrancy Vulnerability Detection in Smart Contracts Based on Local Graph Matching [J]. Netinfo Security, 2022, 22(8): 1-7. |
[4] | LIU Guangjie, DUAN Kun, ZHAI Jiangtao, QIN Jiayu. Mobile Traffic Application Recognition Based on Multi-Feature Fusion [J]. Netinfo Security, 2022, 22(7): 18-26. |
[5] | WANG Haoyang, LI Wei, PENG Siwei, QIN Yuanqing. An Intrusion Detection Method of Train Control System Based on Ensemble Learning [J]. Netinfo Security, 2022, 22(5): 46-53. |
[6] | HU Wei, ZHAO Wenlong, CHEN Lu, FU Wei. An Improved JSMA Algorithm against Sample Attack Based on Logits Vector [J]. Netinfo Security, 2022, 22(3): 62-69. |
[7] | LIU Feng, YANG Chengyi, YU Xincheng, QI Jiayin. Spectral Graph Convolutional Neural Network for Decentralized Dual Differential Privacy [J]. Netinfo Security, 2022, 22(2): 39-46. |
[8] | LIN Faxin, ZHANG Jian. Design and Implementation of Abnormal Behavior Detection System for Virtualization Platform [J]. Netinfo Security, 2022, 22(11): 62-67. |
[9] | TONG Xin, JIN Bo, WANG Jingya, YANG Ying. A Multi-View and Multi-Task Learning Detection Method for Android Malware [J]. Netinfo Security, 2022, 22(10): 1-7. |
[10] | ZHANG Zhi, LI Xin, YE Naifu, HU Kaixi. CAPTCHA Security Enhancement Method Incorporating Multiple Style Migration and Adversarial Examples [J]. Netinfo Security, 2022, 22(10): 129-135. |
[11] | GAO Changfeng, XIAO Yanhui, TIAN Huawei. Image Camera Fingerprint Extraction Algorithm Based on MPRNet [J]. Netinfo Security, 2022, 22(10): 15-23. |
[12] | LIU Jiayin, LI Fujuan, MA Zhuo, XIA Lingling. Malware Classification Method Based on Multi-Scale Convolutional Neural Network [J]. Netinfo Security, 2022, 22(10): 31-38. |
[13] | ZHU Lina, MA Mingrui, ZHU Dongzhao. Detection Method for C Language Family Based on Graph Neural Network and Generic Vulnerability Analysis Framework [J]. Netinfo Security, 2022, 22(10): 59-68. |
[14] | JIANG Shouzhi, CAO Jinxuan, YIN Haozhan, LU Tianliang. Identifying Tor Website Fingerprinting Model Based on MHA and SDAE [J]. Netinfo Security, 2022, 22(10): 8-14. |
[15] | YI Xiaoyang, ZHANG Jian. Image-based Phishing Email Detection Method and Implementation [J]. Netinfo Security, 2021, 21(9): 52-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||