Netinfo Security ›› 2023, Vol. 23 ›› Issue (4): 20-29.doi: 10.3969/j.issn.1671-1122.2023.04.003
Previous Articles Next Articles
ZHAO Caidan1, CHEN Jingqian1, WU Zhiqiang2,3()
Received:
2022-11-17
Online:
2023-04-10
Published:
2023-04-18
Contact:
WU Zhiqiang
E-mail:lightnesstibet@163.com
CLC Number:
ZHAO Caidan, CHEN Jingqian, WU Zhiqiang. Automatic Modulation Recognition Algorithm Based on Multi-Channel Joint Learning[J]. Netinfo Security, 2023, 23(4): 20-29.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2023.04.003
网络 调制 方式 | SCRNN | 1DCNN-PF | CNN2 | CLDNN | MCLDNN | LSTM2 | SCRNN | asymmetric-MJLNet |
---|---|---|---|---|---|---|---|---|
8PSK | 84% | 80% | 77% | 82% | 86% | 73% | 84% | 89% |
AM-DSB | 86% | 99% | 99% | 87% | 89% | 93% | 86% | 90% |
AM-SSB | 97% | 98% | 95% | 94% | 92% | 95% | 97% | 93% |
BPSK | 99% | 98% | 98% | 99% | 99% | 94% | 99% | 99% |
CPFSK | 100% | 100% | 98% | 96% | 100% | 99% | 100% | 100% |
GFSK | 99% | 94% | 94% | 93% | 99% | 97% | 99% | 97% |
PAM4 | 98% | 98% | 98% | 97% | 98% | 96% | 98% | 98% |
QAM16 | 52% | 83% | 40% | 40% | 81% | 76% | 52% | 83% |
QAM64 | 55% | 71% | 59% | 63% | 86% | 48% | 55% | 81% |
QPSK | 82% | 95% | 40% | 74% | 96% | 86% | 82% | 97% |
WBFM | 39% | 29% | 24% | 43% | 41% | 33% | 39% | 38% |
[1] |
GUPTA A, JHA R K. A Survey of 5G Network: Architecture and Emerging Technologies[J]. IEEE Access, 2015, 3: 1206-1232.
doi: 10.1109/ACCESS.2015.2461602 URL |
[2] |
WANG Qun, SUN Haijian, HU R Q Y, et al. When Machine Learning Meets Spectrum Sharing Security: Methodologies and Challenges[J]. IEEE Open Journal of the Communications Society, 2022, 3: 176-208.
doi: 10.1109/OJCOMS.2022.3146364 URL |
[3] |
LANZOLLA G, ANDERSON J A. Digital Transformation[J]. Business Strategy Review, 2008, 19(2): 72-76.
doi: 10.1111/j.1467-8616.2008.00539.x URL |
[4] |
ZHANG Lin, XIAO Ming, WU Gang, et al. A Survey of Advanced Techniques for Spectrum Sharing in 5G Networks[J]. IEEE Wireless Communications, 2017, 24(5): 44-51.
doi: 10.1109/MWC.2017.1700069 URL |
[5] | ALARBI A, ALKISHRIWO O A S. Modulation Classification Based on Statistical Features and Artificial Neural Network[C]// IEEE. 2021 IEEE 1st International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering MI-STA. New York: IEEE, 2021: 748-751. |
[6] | KIM K, POLYDOROS A. Digital Modulation Classification: The BPSK Versus QPSK Case[C]// IEEE. MILCOM 88, 21st Century Military Communications Conference. New York: IEEE, 1988: 431-436. |
[7] |
JIANG Yuhan, ZOU Yulong, OUYANG Jian, et al. Secrecy Energy Efficiency Optimization for Artificial Noise Aided Physical-Layer Security in OFDM-Based Cognitive Radio Networks[J]. IEEE Transactions on Vehicular Technology, 2018, 67(12): 11858-11872.
doi: 10.1109/TVT.2018.2876062 URL |
[8] | LI Xiaofan, DONG Fangwei, ZHANG Sha, et al. A Survey on Deep Learning Techniques in Wireless Signal Recognition[J]. Wireless Communications and Mobile Computing, 2019, 179: 1-12. |
[9] |
WALENCZYKOWSKA M, KAWALEC A. Type of Modulation Identification Using Wavelet Transform and Neural Network[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2016, 64(1): 257-261.
doi: 10.1515/bpasts-2016-0028 URL |
[10] |
SWAMI A, SADLER B M. Hierarchical Digital Modulation Classification Using Cumulants[J]. IEEE Transactions on Communications, 2000, 48(3): 416-429.
doi: 10.1109/26.837045 URL |
[11] | VUCIC D, VUKOTIC S, ERIC M. Cyclic Spectral Analysis of OFDM/OQAM Signals[J]. AEU-International Journal of Electronics and Communications, 2017, 73: 139-143. |
[12] |
OTTER D W, MEDINA J R, KALITA J K. A Survey of the Usages of Deep Learning for Natural Language Processing[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(2): 604-624.
doi: 10.1109/TNNLS.5962385 URL |
[13] |
KHAN M, SAJJAD M, KWON S. Clustering-Based Speech Emotion Recognition by Incorporating Learned Features and Deep BiLSTM[J]. IEEE Access, 2020, 8: 79861-79875.
doi: 10.1109/Access.6287639 URL |
[14] | O’SHEA T J, CORGAN J, CLANCY T C. Convolutional Radio Modulation Recognition Networks[C]// Springer. International Conference on Engineering Applications of Neural Networks. Berlin:Springer, 2016: 213-226. |
[15] | WEST N E, O'SHEA T. Deep Architectures for Modulation Recognition[C]// IEEE. 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). New York: IEEE, 2017: 1-7. |
[16] |
RAJENDRAN S, MEERT W, GIUSTINIANO D, et al. Deep Learning Models for Wireless Signal Classification with Distributed Low-Cost Spectrum Sensors[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(3): 433-445.
doi: 10.1109/TCCN.2018.2835460 URL |
[17] | PERENDA E, RAJENDRAN S, POLLIN S. Automatic Modulation Classification Using Parallel Fusion of Convolutional Neural Networks[C]// BalkanCom. Third International Balkan Conference on Communications and Networking. Istanbul: BalkanCom, 2019: 469-478. |
[18] |
XU Jialang, LUO Chunbo, PARR G, et al. A Spatiotemporal Multi-Channel Learning Framework for Automatic Modulation Recognition[J]. IEEE Wireless Communications Letters, 2020, 9(10): 1629-1632.
doi: 10.1109/LWC.5962382 URL |
[19] |
LIAO Kaisheng, ZHAO Yaodong, GU Jie, et al. Sequential Convolutional Recurrent Neural Networks for Fast Automatic Modulation Classification[J]. IEEE Access, 2021, 9: 27182-27188.
doi: 10.1109/Access.6287639 URL |
[20] |
HUYNH-THE T, PHAM Q V, NGUYEN T V, et al. Automatic Modulation Classification: A Deep Architecture Survey[J]. IEEE Access, 2021, 9: 142950-142971.
doi: 10.1109/ACCESS.2021.3120419 URL |
[21] | LIU Minhao, ZENG Ailing, LAI Q, et al. Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction[EB/OL]. (2021-10-19)[2022-11-05]. https://www.xueshufan.com/publication/3171665133. |
[22] | O'SHEA T J, WEST N. Radio Machine Learning Dataset Generation with GNU Radio[EB/OL]. (2016-09-06)[2022-11-05]. https://pubs.gnuradio.org/index.php/grcon/article/view/11. |
[23] | LAURENS V D M, GEOFFREY H. Visualizing Data Using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(11): 2579-2625. |
[1] | TAN Liuyan, RUAN Shuhua, YANG Min, CHEN Xingshu. Educational Data Classification Based on Deep Learning [J]. Netinfo Security, 2023, 23(3): 96-102. |
[2] | XU Zhanyang, CHENG Luofei, CHENG Jianchun, XU Xiaolong. A Scheme of Optimizing Deep Learning Model Using Bi-ADMM [J]. Netinfo Security, 2023, 23(2): 54-63. |
[3] | CHEN Depeng, LIU Xiao, CUI Jie, ZHONG Hong. Research on Membership Inference Attack Method Based on Double Threshold Function [J]. Netinfo Security, 2023, 23(2): 64-75. |
[4] | JIA Fan, KANG Shuya, JIANG Weiqiang, WANG Guangtao. Vulnerability Similarity Algorithm Evaluation Based on NLP and Feature Fusion [J]. Netinfo Security, 2023, 23(1): 18-27. |
[5] | GAO Bo, CHEN Lin, YAN Yingjian. Research on Side Channel Attack Based on CNN-MGU [J]. Netinfo Security, 2022, 22(8): 55-63. |
[6] | ZHENG Yaohao, WANG Liming, YANG Jing. A Defense Method against Adversarial Attacks Based on Neural Architecture Search [J]. Netinfo Security, 2022, 22(3): 70-77. |
[7] | GUO Sensen, WANG Tongli, MU Dejun. Anomaly Detection Model Based on Generative Adversarial Network and Autoencoder [J]. Netinfo Security, 2022, 22(12): 7-15. |
[8] | ZHANG Zhi, LI Xin, YE Naifu, HU Kaixi. CAPTCHA Security Enhancement Method Incorporating Multiple Style Migration and Adversarial Examples [J]. Netinfo Security, 2022, 22(10): 129-135. |
[9] | LIU Shuo, ZHANG Xinglan. Intrusion Detection System Based on Dual Attention [J]. Netinfo Security, 2022, 22(1): 80-86. |
[10] | ZHU Xintong, TANG Yunqi, GENG Pengzhi. Detection Algorithm of Tamper and Deepfake Image Based on Feature Fusion [J]. Netinfo Security, 2021, 21(8): 70-81. |
[11] | LU Honglin, WANG Liming. User-oriented Data Privacy Preserving Method for Federated Learning that Supports User Disconnection [J]. Netinfo Security, 2021, 21(3): 64-71. |
[12] | MA Rui, CAI Manchun, PENG Shufan. A Deep Forgery Video Detection Model Based on Improved Xception Network [J]. Netinfo Security, 2021, 21(12): 109-117. |
[13] | PAN Xiaoqin, DU Yanhui. Forged Voice Identification Method Based on Feature Fusion and Multi-channel GRU [J]. Netinfo Security, 2021, 21(10): 1-7. |
[14] | XU Guotian, SHENG Zhenwei. DGA Malicious Domain Name Detection Method Based on Fusion of CNN and LSTM [J]. Netinfo Security, 2021, 21(10): 41-47. |
[15] | WU Jing, LU Tianliang, DU Yanhui. Generation of Malicious Domain Training Data Based on Improved Char-RNN Model [J]. Netinfo Security, 2020, 20(9): 6-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||