[1] |
MANSOURI Y, BABAR M A. A Review of Edge Computing: Features and Resource Virtualization[J]. Journal of Parallel and Distributed Computing, 2021, 150: 155-183.
doi: 10.1016/j.jpdc.2020.12.015
URL
|
[2] |
UEKI K, KOURAI K. Fine-Grained Autoscaling with In-VM Containers and VM Introspection[C]//IEEE. 2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC). New York:IEEE, 2020: 155-164.
|
[3] |
GARFINKEL T, ROSENBLUM M. A Virtual Machine Introspection Based Architecture for Intrusion Detection[EB/OL]. [2022-06-08].
|
[4] |
CONTI G, DEAN E, SINDA M, et al. Visual Reverse Engineering of Binary and Data Files[C]// Springer. International Workshop on Visualization for Computer Security. Heidelberg: Springer, 2008: 1-17.
|
[5] |
NATARAJ L, KARTHIKEYAN S, JACOB G, et al. Malware Images: Visualization and Automatic Classification[C]// ACM. Proceedings of the 8th International Symposium on Visualization for Cyber Security. New York: ACM, 2011: 1-7.
|
[6] |
LUO J S, LO D C T. Binary Malware Image Classification Using Machine Learning with Local Binary Pattern[C]// IEEE. 2017 IEEE International Conference on Big Data (Big Data). New York:IEEE, 2017: 4664-4667.
|
[7] |
LE Q, BOYDELL O, MAC NAMEE M B, et al. Deep Learning at the Shallow End: Malware Classification for Non-Domain Experts[J]. Digital Investigation, 2018, 26: 118-126.
|
[8] |
QIAO Yanchen, JIANG Qingshan, JIANG Zhenchao, et al. A Multi-Channel Visualization Method for Malware Classification Based on Deep Learning[C]//IEEE. 2019 18th IEEE International Conference On Trust, Security And Privacy in Computing and Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). New York:IEEE, 2019: 757-762.
|
[9] |
PINHERO A, ANUPAMA M L, VINOD P, et al. Malware Detection Employed by Visualization and Deep Neural Network[J]. Computers & Security, 2021, 105: 102247.
doi: 10.1016/j.cose.2021.102247
URL
|
[10] |
LIN W C, YEH Y R. Efficient Malware Classification by Binary Sequences with One-Dimensional Convolutional Neural Networks[J]. Mathematics, 2022, 10(4): 608.
doi: 10.3390/math10040608
URL
|
[11] |
O’SHAUGHNESSY S, SHERIDAN S. Image-Based Malware Classification Hybrid Framework Based on Space-Filling Curves[J]. Computers & Security, 2022, 116: 102660.
doi: 10.1016/j.cose.2022.102660
URL
|
[12] |
O’SHAUGHNESSY S. Image-Based Malware Classification: A Space Filling Curve Approach[C]//IEEE. 2019 IEEE Symposium on Visualization for Cyber Security (VizSec). New York:IEEE, 2019: 1-10.
|
[13] |
WANG Xiangyi, ZHANG Jian. Abnormal Behavior Detection of Virtualization Platform Based on Image and Machine Learning[J]. Netinfo Security, 2020, 20(9): 92-96.
|
|
王湘懿, 张健. 基于图像和机器学习的虚拟化平台异常检测[J]. 信息网络安全, 2020, 20(9): 92-96.
|
[14] |
BASU K, KRISHNAMURTHY P, KHORRAMI F, et al. A Theoretical Study of Hardware Performance Counters-Based Malware Detection[J]. IEEE Transactions on Information Forensics and Security, 2019, 15: 512-525.
doi: 10.1109/TIFS.2019.2924549
URL
|
[15] |
KUMAR R, PATI S, LAHIRI K. Darts: Performance-Counter Driven Sampling Using Binary Translators[C]//IEEE. 2017 IEEE International Symposium on Performance Analysis of Systems and Software(ISPASS). New York:IEEE, 2017: 131-132.
|
[16] |
TRIPATHI S, GRIECO G, RAWAT S. Exniffer: Learning to Prioritize Crashes by Assessing the Exploitability from Memory Dump[C]//IEEE. 2017 24th Asia-Pacific Software Engineering Conference (APSEC). New York:IEEE, 2017: 239-248.
|