[1] |
KWON H, KIM Y, YOON H, et al. CAPTCHA Image Generation Systems Using Generative Adversarial Networks[J]. Ieice Transactions on Information & Systems, 2018,12(2):543-546.
|
[2] |
WANG F, JUN G H, FAN G, et al. Chinese Character CAPTCHA Recognition Based on Convolution Neural Network[EB/OL]. https://www.researchgate.net/publication/311251657_Chinese_character_CAPTCHA_recognition_based_on_convolution_neural_network, 2019-10-15.
|
[3] |
KAZUMA A. Server for Implementing Image Processing Functions Requested by A Printing Device[J]. Environmental Pollution, 2018,152(3):543-552.
URL
pmid: 17703858
|
[4] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deep Lab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018,40(4):834.
doi: 10.1109/TPAMI.2017.2699184
URL
pmid: 28463186
|
[5] |
MILTIADIS A, BARR E T, PREMKUMAR D, et al. A Survey of Machine Learning for Big Code and Naturalness[J]. ACM Computing Surveys, 2018,51(4):1-37.
|
[6] |
RAISSI M, KARNIADAKIS G E. Hidden Physics Models: Machine Learning of Nonlinear Partial, Differential Equations[EB/OL]. http://www.researchgate.net/publication/318868462_Hidden_Physics_Models_Machine_Learning_of_Nonlinear_Partial_Differential_Equations, 2019-10-15.
|
[7] |
CHEN X, MAKKI K, YEN K, et al. Sensor Network Security: A Survey[J]. IEEE Communications Surveys & Tutorials, 2009,11(2):52-73.
|
[8] |
SARWAR S S, PANDA P, ROY K. Gabor Filter Assisted Energy Efficient Fast Learning Convolutional Neural Networks[C]// IEEE. 2017 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), July 24-26, 2017, Taipei, China. NJ: IEEE, 2017: 1-6.
|
[9] |
MEHTA R, EGIAZARIAN K. Dominant Rotated Local Binary Patterns (DRLBP) for Texture Classification[J]. Pattern Recognition Letters, 2016,71(11):16-22.
|
[10] |
YI K M, TRULLS E, LEPETIT V, et al. Lift: Learned Invariant Feature Transform[EB/OL]. http://www.researchgate.net/publication/308277668_LIFT_Learned_Invariant_Feature_Transform, 2019-10-15.
|
[11] |
YAN G, YU M, YU Y, et al. Real-Time Vehicle Detection Using Histograms of Oriented Gradients and AdaBoost Classification[J]. Optik, 2016,127(19):7941-7951.
|
[12] |
WANG Hu, FENG Lin, SUN Yuzhe. Research and Design of Digital Character-Based CAPTCHA Decoder[J]. Computer Engineering and Applications, 2007,43(32):86-88.
|
|
王虎, 冯林, 孙宇哲. 数字验证码识别算法的研究和设计[J]. 计算机工程与应用, 2007,43(32):86-88.
|
[13] |
TIAN Huaichuan. Research and Application on Captcha Recognition and Prevention Based on Neural Network[D]. Harbin: Harbin Institute of Technology, 2010.
|
|
田怀川. 基于神经网络的图形验证码识别及防识别的研究与应用[D]. 哈尔滨:哈尔滨工业大学, 2010.
|
[14] |
GANG Lv, HAO Ping. Research on Recognition of CAPTCHA Based on Neural Network[J]. Journal of Zhejiang University of Technology, 2010,38(4):433-436.
|
|
吕刚, 郝平. 基于神经网络的数字验证码识别研究[J]. 浙江工业大学学报, 2010,38(4):433-436.
|
[15] |
CAO Yanrong, GONG Yanhong, JIA Huizhen. Verification Code Recognition Method Based on Adversarial Network[J]. Computer Engineering and Applications, 2020,56(8):199-204.
|
|
曹廷荣, 龚燕红, 贾惠珍. 基于对抗网络的验证码识别方法[J]. 计算机工程与应用, 2020,56(8):199-204.
|
[16] |
SCHMIDHUBER , JÜRGEN . Deep Learning in Neural Networks: An Overview[J]. Neural Networks, 2015,61(1):85-117.
|
[17] |
LITJENS , GEERT , KOOI , et al. A Survey on Deep Learning in Medical Image Analysis[J]. Medical Image Analysis, 2017,42(9):60-88.
doi: 10.1016/j.media.2017.07.005
URL
|
[18] |
SHIN H C, ROTH H R, GAO M, et al. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN, Architectures, Dataset Characteristics and Transfer Learning[J]. IEEE Transactions on Medical Imaging, 2016,35(5):1285-1298.
doi: 10.1109/TMI.2016.2528162
URL
pmid: 26886976
|
[19] |
ZHANG Q, YANG L T, CHEN Z, et al. A Survey on Deep Learning for Big Data[J]. Information Fusion, 2018,42(10):146-157.
doi: 10.1016/j.inffus.2017.10.006
URL
|
[20] |
LEDDY J. Ultrathin Layer Convolution[J]. Journal of Electroanalytical Chemistry, 1991,300(1-2):295-307.
|
[21] |
LUAN S, CHEN C, ZHANG B, et al. Gabor Convolutional Networks[J]. IEEE Transactions on Image Processing, 2018,27(9):1.
doi: 10.1109/TIP.2017.2787262
URL
|
[22] |
SZEGEDY C, LIU W, JIA Y, et al. Going Deeper with Convolutions[C]// IEEE. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. NJ: IEEE, 2015: 1-9.
|
[23] |
CHOLLET F. Xception: Deep Learning with Depthwise Separable Convolutions[C]// IEEE. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, July 21-26, 2017, Honolulu. NJ: IEEE, 2017: 1800-1807.
|