信息网络安全 ›› 2025, Vol. 25 ›› Issue (10): 1604-1614.doi: 10.3969/j.issn.1671-1122.2025.10.011

• 理论研究 • 上一篇    下一篇

基于共性伪造线索感知的物理和数字人脸攻击联合检测方法

梁凤梅1(), 潘正豪1, 刘阿建2   

  1. 1.太原理工大学电子信息工程学院,晋中 030600
    2.中国科学院自动化研究所,北京 100190
  • 收稿日期:2025-04-23 出版日期:2025-10-10 发布日期:2025-11-07
  • 通讯作者: 梁凤梅 E-mail:fm_liang@163.com
  • 作者简介:梁凤梅(1969—),女,山西,副教授,博士,主要研究方向为信息安全、图像处理、图像通信、计算机视觉、智能信息处理|潘正豪(2001—),男,山西,硕士研究生,主要研究方向为计算机视觉、图像处理、人脸活体检测|刘阿建(1992—),男,山西,助理研究员,博士,主要研究方向为计算机视觉、人脸活体检测
  • 基金资助:
    国家自然科学基金(62406320)

A Joint Detection Method for Physical and Digital Face Attacks Based on Common Forgery Clue Awareness

LIANG Fengmei1(), PAN Zhenghao1, LIU Ajian2   

  1. 1. College of Electronic Information Engineering, Taiyuan University of Technology, Jinzhong 030600, China
    2. Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2025-04-23 Online:2025-10-10 Published:2025-11-07
  • Contact: LIANG Fengmei E-mail:fm_liang@163.com

摘要:

人脸识别系统在实际应用中面临物理攻击与数字攻击的双重威胁。由于两类攻击存在显著异质性,通常需要依赖不同的模型分别应对。为了节约计算资源及硬件部署成本,针对物理攻击和数字攻击在特征空间中呈现显著分布差异且按攻击类型聚类的特点,文章提出基于对比语言和图像预训练模型的物理和数字人脸攻击联合检测方法。首先,文章基于混合专家结构提出自适应特征提取模块,通过稀疏激活并结合共享分支实现攻击类型自适应的特征选择;然后,提出一种与攻击无关的可学习文本提示,探索物理和数字攻击的共性伪造线索,实现不同攻击特征簇的有效聚合;最后,引入残差自注意力机制,并设计了细粒度对齐损失,优化共性伪造线索提取过程。在UniAttackData和JFSFDB数据集的联合训练协议上的实验结果表明,相较于其他算法,该方法实现了较低的平均分类错误率。

关键词: 联合攻击检测, 注意力机制, 局部特征, 深度学习, 提示调优

Abstract:

In practical applications, facial recognition systems face the dual threats of physical attacks and digital attacks. Due to the significant heterogeneity between these two types of attacks, different models are often relied upon to address them separately. To conserve computational resources and reduce hardware deployment costs, this paper proposed a joint physical and digital face attack detection method based on the contrastive language and image pre-training model, targeting the characteristic of notable distribution differences and clustering by attack type in the feature space. Firstly, an adaptive feature extraction module was proposed based on the mixture of experts (MoE) structure, achieving attack-type-adaptive feature selection through sparse activation combined with a shared branch; Secondly, an attack-agnostic learnable text prompt was proposed to explore the common forgery clues of physical and digital attacks, enabling effective aggregation of different attack feature clusters; Finally, a residual self-attention mechanism was introduced, and a fine-grained alignment loss was designed to optimize the extraction process of common forgery clues. Experimental results under the joint training protocol on the UniAttackData and JFSFDB datasets show that the proposed method achieves the lower average classification error rate (ACER) compared to other algorithms.

Key words: unified attack detection, attention mechanism, local features, deep learning, prompts tuning

中图分类号: