信息网络安全 ›› 2025, Vol. 25 ›› Issue (8): 1276-1301.doi: 10.3969/j.issn.1671-1122.2025.08.009

• 理论研究 • 上一篇    下一篇

基于深度学习的加密恶意流量检测方法研究综述

王钢1(), 高雲鹏1, 杨松儒2, 孙立涛3, 刘乃维1   

  1. 1.内蒙古工业大学数据科学与应用学院,呼和浩特 010080
    2.内蒙古自治区公安厅,呼和浩特 010050
    3.内蒙古自治区教育考试院,呼和浩特 010010
  • 收稿日期:2025-04-16 出版日期:2025-08-10 发布日期:2025-09-09
  • 通讯作者: 王钢 E-mail:wg@imut.edu.cn
  • 作者简介:王钢(1971—),男,辽宁,正高级工程师,硕士,CCF高级会员,主要研究方向为计算机网络、网络与信息安全|高雲鹏(2000—),男,内蒙古,硕士研究生,主要研究方向为恶意流量检测、加密流量分析|杨松儒(1974—),男,河南,正高级工程师,硕士,主要研究方向为信息化、网络安全|孙立涛(1980—),男,山东,硕士,主要研究方向为信息化建设与应用研究|刘乃维(1992—),男,内蒙古,讲师,博士,主要研究方向为网络空间安全
  • 基金资助:
    国家自然科学基金(62472237)

A Survey on Deep Learning-Based Encrypted Malicious Traffic Detection Methods

WANG Gang1(), GAO Yunpeng1, YANG Songru2, SUN Litao3, LIU Naiwei1   

  1. 1. School of Data Science and Application, Inner Mongolia University of Technology, Hohhot 010080, China
    2. Inner Mongolia Autonomous Region Public Security Bureau, Hohhot 010050, China
    3. Education Examinations Authority of Inner Mongolia Autonomous Region, Hohhot 010010, China
  • Received:2025-04-16 Online:2025-08-10 Published:2025-09-09

摘要:

随着网络安全意识不断提高以及加密技术的广泛应用,网络中加密流量呈现指数式增长。尽管加密技术在保护用户隐私与数据安全中发挥了重要作用,但也为不法分子提供了隐藏恶意攻击行为的手段,给网络安全的监管与防护带来巨大挑战。随着加密流量日益增多,传统的恶意流量检测方法已不再适用。而深度学习凭借其在自动特征提取和复杂数据处理方面的优势,成为了提升检测效果的关键技术。为此,文章对基于深度学习的加密恶意流量检测方法进行系统性综述。首先,按照加密流量检测的一般步骤,提出一个通用的加密流量检测框架。其次,介绍应用于加密恶意流量检测的数据收集处理、特征提取与选择、模型方法以及评估指标等方面,并对现有的公开数据集进行整理分析,讨论数据不平衡问题的解决方案。再次,从监督学习、无监督学习和半监督学习3个方面对比分析不同检测方法的优缺点和分类性能,并总结不同学习方法的优势与不足。最后,探讨加密恶意流量检测领域的开放性问题,并对未来的研究方向进行展望。

关键词: 加密恶意流量检测, 深度学习, 加密流量, 数据不平衡

Abstract:

With the continuous improvement of network security awareness and the widespread application of encryption technology, encrypted traffic in the network is growing exponentially. Although encryption technology plays an important role in protecting user privacy and data security, it also provides a means for malicious actors to hide their attack behaviors, bringing great challenges to network security supervision and protection. With the increasing amount of encrypted traffic, traditional malicious traffic detection methods are no longer applicable. Deep learning, with its advantages in automatic feature extraction and complex data processing, has become a key technology to improve detection performance. Therefore, this paper systematically reviewed the latest achievements of deep learning in encrypted malicious traffic detection. Firstly, a general encrypted traffic detection framework was proposed according to the general steps of encrypted traffic detection. Secondly, it introduced aspects such as data collection and processing, feature extraction and selection, model methods, and evaluation metrics applied to encrypted malicious traffic detection. It also organized and analyzed existing public datasets and discusses solutions to the problem of data imbalance. Then, from the three perspectives of supervised learning, unsupervised learning, and semi-supervised learning, it compared and analyzed the advantages, disadvantages, and classification performance of different detection methods, and summarized the strengths and weaknesses of different learning methods. Finally, it discussed the open problems in the field of encrypted malicious traffic detection and looked forward to future research directions.

Key words: encrypted malicious traffic detection, deep learning, encrypted traffic, data imbalance

中图分类号: