信息网络安全 ›› 2025, Vol. 25 ›› Issue (2): 194-214.doi: 10.3969/j.issn.1671-1122.2025.02.002

• 综述论文 • 上一篇    下一篇

网络流量特征的异常分析与检测方法综述

李海龙, 崔治安(), 沈燮阳   

  1. 火箭军工程大学作战保障学院,西安 710025
  • 收稿日期:2024-05-07 出版日期:2025-02-10 发布日期:2025-03-07
  • 通讯作者: 崔治安 E-mail:zhian_cui@163.com
  • 作者简介:李海龙(1978—),男,甘肃,副教授,博士,主要研究方向为复杂网络和网络安全|崔治安(2000—),男,山东,硕士研究生,主要研究方向为网络安全|沈燮阳(1989—),男,河南,讲师,博士,主要研究方向为数据安全和访问控制
  • 基金资助:
    国家自然科学基金(62176263);国家自然科学基金(62103434)

Overview of Anomaly Analysis and Detection Methods for Network Traffic

LI Hailong, CUI Zhian(), SHEN Xieyang   

  1. College of Combat Support, Rocket Force University of Engineering, Xi’an 710025, China
  • Received:2024-05-07 Online:2025-02-10 Published:2025-03-07

摘要:

随着互联网的普及和网络安全威胁的日益增加,网络流量特征的异常分析与检测已成为网络安全领域的重要研究课题。文章主要对近年来网络流量特征的异常分析与检测方法进行研究,首先,介绍了网络流量异常分析的基本概念和类型;其次,详细讨论了当前主要的异常检测技术,包括基于统计学、信息论、图论、机器学习以及深度学习的方法;然后,对常见的网络流量异常检测方法进行对比分析;最后,探讨当前研究面临的挑战和未来的发展方向。

关键词: 网络安全, 网络流量特征, 异常分析与检测, 深度学习

Abstract:

With the popularization of the Internet and the increasing threat to network security, the analysis and detection of abnormal characteristics of network traffic have become an important research topic in the field of network security. The article mainly studied the methods of abnormal analysis and detection of network traffic characteristics in recent years. Firstly, the basic concepts and types of network traffic abnormality analysis were introduced. Secondly, the current main anomaly detection technologies were discussed in details, including methods based on statistics, information theory, graph theory, machine learning, and deep learning. Then, common network traffic anomaly detection methods were compared. Finally, the challenges of current research and future development directions were discussed.

Key words: network security, network traffic characteristics, the analysis and detection of anomalies, deep learning

中图分类号: