为解决当前网络安全态势预测精度低、指标采集缺失等问题,文章提出一种基于快速傅里叶变换改进的iTransformer模型(FFT-iTransformer)。该模型利用iTransformer架构对时间序列数据进行维度反转嵌入。通过快速傅里叶变换将一维时间序列扩展为二维空间,将周期内的近邻特征和周期间的远邻特征分别映射到二维张量的行与列。首先,模型将周期内特征输入编码器,通过注意力机制学习周期内的局部特征,从而有效捕捉网络安全指标间的动态关联性(如信息安全漏洞数量与感染主机数量间的关联)。然后,将编码器输出的周期内张量融合为二维,传入卷积模块进一步提取二维特征,以捕捉周期间的全局特征。最后,根据振幅所反映的周期相对重要性进行自适应聚合。实验结果表明,该模型预测拟合度可达0.995378,在10%的缺失率下,插补拟合度可达0.879,优于大多数现有模型,可准确插补网络安全态势指标的缺失值,并预测态势值。