时序数据异常检测是数据挖掘及网络安全领域的重要研究课题。文章以时序数据异常检测技术为研究对象,运用文献调研与比较分析方法,深入探讨了深度学习模型在该领域的应用及其研究进展。文章首先介绍了深度时序数据异常检测的定义与应用;其次,提出了深度时序数据异常检测面临的9个问题与挑战,并将时序数据异常分为10类,枚举了16种典型的时序数据异常检测数据集,其中包括5种社交网络舆情安全领域相关数据集;再次,文章将深度时序数据异常检测模型进行分类研究,分析总结了近50个相关模型,其中包括基于半监督增量学习的社交网络不良信息发布者异常检测,进一步地,文章依据深度学习模型的学习模式将模型划分为基于重构、基于预测、基于重构与预测融合3种类型,并对这些模型的优缺点及应用场景进行综合分析;最后,文章从8个方面展望了深度时序异常检测技术的未来研究方向,分析了每个方向的潜在研究价值及技术瓶颈。
人工智能在训练推理等过程中的隐私泄露、推理失真等安全问题,引起了人们的高度关注,甚至涉及意识形态乃至国家战略安全。在此背景下,联邦学习作为一种新兴的机器学习架构,通过保持数据本地性的同时实现模型的联合训练,为多方参与数据分析、处理和共享的应用领域提供了有效的隐私保护能力。从联邦学习的研究动机、技术方法等方面来看,如何利用该技术有效解决典型应用场景下的实际问题是其核心和关键,因此相关应用研究现状的全面综述,对联邦学习的进一步研究与实践都具有参考价值。为此,文章对联邦学习在异常检测、推荐系统以及自然语言处理等典型技术应用中的研究现状进行综合性调研。首先,文章对相关文献按照应用场景角度进行全面的分类梳理,从多领域视角分析了联邦学习架构的研究现状。其次,文章从技术实现的角度,对比分析了各技术领域中不同方案的数据集合、性能特点、评价指标等方面。在此基础上,文章分析总结了联邦学习研究尤其是系统应用面临的关键挑战和发展方向。
随着互联网的普及和网络安全威胁的日益增加,网络流量特征的异常分析与检测已成为网络安全领域的重要研究课题。文章主要对近年来网络流量特征的异常分析与检测方法进行研究,首先,介绍了网络流量异常分析的基本概念和类型;其次,详细讨论了当前主要的异常检测技术,包括基于统计学、信息论、图论、机器学习以及深度学习的方法;然后,对常见的网络流量异常检测方法进行对比分析;最后,探讨当前研究面临的挑战和未来的发展方向。
在联邦学习中,由于需要大量的参数交换,可能会引发来自不可信参与设备的安全威胁。为了保护训练数据和模型参数,必须采用有效的隐私保护措施。鉴于异构数据的不均衡特性,文章提出一种自适应性差分隐私方法来保护基于异构数据的联邦学习的安全性。首先为不同的客户端设置不同的初始隐私预算,对局部模型的梯度参数添加高斯噪声;其次在训练过程中根据每一轮迭代的损失函数值,动态调整各个客户端的隐私预算,加快收敛速度;接着设定一个可信的中央节点,对不同客户端的局部模型的每一层参数进行随机交换,然后将混淆过后的局部模型参数上传到中央服务器进行聚合;最后中央服务器聚合可信中央节点上传的混淆参数,根据预先设定的全局隐私预算阈值,对全局模型添加合适的噪声,进行隐私修正,实现服务器层面的隐私保护。实验结果表明,在相同的异构数据条件下,相对于普通的差分隐私方法,该方法具有更快的收敛速度以及更好的模型性能。
随着人工智能技术的快速发展,智能系统在医疗、工业等多个领域得到广泛应用。然而,智能系统中存储的大量用户数据一旦遭受恶意攻击,将对用户隐私构成严重威胁。为保护用户数据隐私,许多国家已出台相关法律法规,以确保用户享有“被遗忘权”。机器遗忘技术通常分为精确遗忘和近似遗忘两类,旨在通过调整模型参数,从已训练好的模型中消除特定数据的影响。精确遗忘方法利用剩余数据重新训练模型实现遗忘,但其计算成本较高;近似遗忘方法则通过少量参数更新实现遗忘,然而现有方法存在遗忘性能不足、遗忘时间过长等问题。文章提出一种基于自适应采样的机器遗忘方法,该方法先对模型训练过程中的梯度进行采样,随后利用少量梯度信息完成遗忘,具有广泛的适用性,可适配多种机器遗忘方法。实验结果表明,“先采样后遗忘”策略显著提升了近似遗忘性能,同时将精确遗忘时间减少了约22.9%,近似遗忘时间减少了约38.6%。
随着工业4.0和智能制造的快速发展,工业控制系统的安全性成为关键问题。工业控制协议作为工业控制系统的核心通信机制,其安全性直接关系到系统的稳定性和数据保护。然而,许多工业控制协议在设计时缺乏充分的网络安全考虑,导致系统容易受到恶意软件、拒绝服务等攻击,可能危及企业利益甚至国家安全。当前,研究者们正积极探索工业控制协议的安全问题,并提出了多种解决方案。文章综述了工业控制协议的安全现状、主要挑战和发展趋势。首先,介绍了工业控制协议的基本概念和分类,分析了其安全特性及脆弱性。然后,重点讨论了符号执行、逆向分析和模糊测试在漏洞挖掘中的应用,这些技术在应对复杂工业协议时尤为有效。而且还探讨了加密认证、入侵检测及深度防御等安全防护措施。最后,文章探索了生成式大语言模型在工业控制系统安全中的应用,涉及代码生成、网络防护及自动化控制等领域,助力工业控制系统从被动防御向主动防护转变。通过本研究,期望能够提升对工业控制协议安全性的认识,为工业控制系统的可靠性和安全性提供坚实的基础和实用的解决方案,以有效保护关键信息基础设施免受潜在威胁和攻击。
随着我国网络安全能力逐渐提高,网络攻击的数量和复杂性也逐渐增长,网络攻击检测技术面临着巨大挑战。为了提高网络攻击检测的准确性,文章提出一种基于残差卷积神经网络的网络攻击检测模型HaoResNet,并在USTC-TFC2016数据集上对HaoResNet模型进行测试。首先,HaoResNet模型将pcap流量文件转化为灰度图像;然后,对正常流量和恶意流量进行二分类、十分类和二十分类实验。实验结果表明,HaoResNet模型在二分类任务上的精确率达到100%,正常流量十分类任务上的精确率为99%,恶意流量十分类任务上的精确率为98%,二十分类任务上的精确率为98%。与现有模型相比,HaoResNet模型在二分类任务上实现了更高的检测精度。
目前大语言模型LLM在文本生成、机器翻译和情感分析等领域取得了显著的成果。为了保护模型数据集与参数版权,防止未经授权的复制和使用,并验证消息的真实性,需要通过水印技术确保LLM的安全性和可信度。根据LLM运行的不同时间点,文章将当前水印技术分为嵌入模型训练的水印、推理阶段插入的水印和文本生成后的追加水印3类。针对水印的鲁棒性、保密性和有效性需求,文章对水印技术的评价指标进行了整理,并对现存的抗水印攻击进行综述,旨在进一步推动大语言模型水印技术的发展和应用。
近年来,以深度神经网络为代表的机器学习技术在自动驾驶、智能家居和语音助手等领域获得了广泛应用。在上述高实时要求场景下,多数服务商将模型部署在边缘设备以规避通信带来的网络时延与通信开销。然而,边缘设备不受服务商控制,所部署模型易遭受模型窃取、错误注入和成员推理等攻击,进而导致高价值模型失窃、推理结果操纵及私密数据泄露等严重后果,使服务商市场竞争力受到致命打击。为解决上述问题,众多学者致力于研究基于可信执行环境(TEE)的安全推理,在保证模型可用性条件下保护模型的参数机密性与推理完整性。文章首先介绍相关背景知识,给出安全推理的定义,并归纳其安全模型;然后对现有TEE安全推理的模型机密性保护方案与推理完整性保护方案进行了分类介绍和比较分析;最后展望了TEE安全推理的未来研究方向。
随着智能医疗系统的快速发展,标注数据的匮乏已成为制约研究进展的关键因素之一,知识蒸馏作为一种有效的数据利用策略能够缓解这一问题。然而,在智能医疗领域,模型通常用于替代人工进行影像、数据的诊断,这不仅对医疗信息隐私保护提出了更高要求,还强调了模型精度对诊断结果准确性的决定性影响。因此,文章提出一种结合差分隐私的知识蒸馏方案,并将其应用于图神经网络模型,在知识蒸馏过程中保护用户敏感信息的同时,确保较高的医疗诊断准确率。为验证所提方法的有效性,文章构建了图注意力网络(GAT)模型和卷积神经网络(CNN)模型作为对照组,并采用3种实际医疗图像数据集进行实验。结果表明,文章所提方法在GAT模型的准确率较在CNN模型的准确率有所提升,对应在3个数据集上分别由61%提升至68%、83%提升至93%、67%提升至80%。鉴于GAT模型的高资源开销,文章进一步设计了一种轻量化GAT模型架构。该轻量化模型在显著降低资源消耗的同时,仍保持优于CNN模型的分类性能,从而在差分隐私保护的前提下,有效提升医疗诊断效果。
随着反序列化技术在Java Web应用开发中的广泛应用,针对Java反序列化机制的攻击也日益增多,已严重威胁Java Web应用的安全性。当前主流的黑名单防范机制无法有效防御未知的反序列化漏洞利用,而现有的Java反序列化漏洞挖掘工具大多依赖静态分析方法,检测精确度较低。文章提出一种基于模糊测试的Java反序列化漏洞挖掘工具DSM-Fuzz,该工具首先通过对字节码进行双向追踪污点分析,提取所有可能与反序列化相关的函数调用链。然后,利用基于TrustRank算法的函数权值分配策略,评估函数与反序列化调用链的关联性,并根据相关性权值对模糊测试种子分配能量。为进一步优化测试用例的语法结构和语义特征,文章设计并实现了一种基于反序列化特征的种子变异算法。该算法利用反序列化的Java对象内部特征优化种子变异过程,并引导模糊测试策略对反序列化漏洞调用链进行路径突破。实验结果表明,DSM-Fuzz在漏洞相关代码覆盖量方面较其他工具提高了约90%。此外,该工具还在多个主流Java库中成功检测出50%的已知反序列化漏洞,检测精确度显著优于其他漏洞检测工具。因此,DSM-Fuzz可有效辅助Java反序列化漏洞的检测和防护。
企业或组织面临的信息安全风险主要来自内部威胁,特别是内部人员的恶意行为,这类风险相较于外部攻击更具隐蔽性和难以检测性。为了更加准确地检测出企业或组织内部人员的恶意行为,文章基于用户行为日志分析,提出一种基于CNN-LSTM算法的内部威胁检测方法。该方法使用CMU CERT R4.2公开的内部威胁数据集构建用户行为特征序列,首先通过CNN层对用户行为进行重要特征提取,然后使用LSTM层进行用户行为预测,最后通过全连接层识别用户的行为是否为威胁行为。将文章所提出的模型与 CNN、LSTM、LSTM-CNN 等经典内部威胁检测模型进行了对比实验。实验结果验证了所提模型的可实现性,并且展现出其在内部威胁行为检测方面的优势。在评估指标中,该模型的AUC得分达到0.99。具体而言,实验表明采用 CNN-LSTM 算法进行内部威胁检测的方法能够显著降低误报率,准确率达到98% ,能够有效识别企业内部潜藏的威胁行为。
随着信息技术的高速发展,网络空间与现实世界连接越来越紧密。将知识图谱技术应用于网络安全领域,能够从网络空间海量数据中获取碎片化的有效安全知识进行整合,为决策提供支持。现有方法存在本体模型缺乏统一标准、知识抽取效果不佳等问题,因此,文章提出一种基于本体的网络安全知识图谱构建方法,该方法包含命名实体识别和关系抽取两个模型,其中命名实体识别模型结合BERT预训练模型、双向长短期记忆网络、多头注意力机制和条件随机场;关系抽取模型结合BERT预训练模型、自注意力机制和卷积神经网络。这两个模型提升了命名实体识别的准确率,并提升了关系抽取任务的准确率以及自动化程度。文章提出的网络安全知识图谱构建方法可整合并分析网络安全数据,实现网络安全知识的智能化检索以及知识图谱的自动更新和扩展。
量子计算的加速发展以及社会各界对隐私保护的日益重视,引发了对后量子零知识证明技术的研究热潮。文章聚焦于基于格的零知识证明的研究。首先,系统介绍了基于格的零知识证明的研究现状;然后,根据底层使用的关键技术对主流的基于格的零知识证明协议进行分类与总结,并深入分析3种经典协议的设计原理和性能表现;最后,简要讨论基于格的零知识证明未来可能的研究热点和发展方向。
公钥基础设施-证书颁发机构(PKI-CA)是一种用于管理数字证书和公私钥对的技术框架,传统PKI-CA系统由于集中化管理的特性,存在单点故障和安全风险。为解决这些问题,文章设计了一种基于区块链智能合约的去中心化PKI-CA系统,通过智能合约实现证书的增删改查,各节点扮演证书颁发机构或注册机构的角色。为提高效率,系统采用了基于星际文件系统的数字证书索引算法,使用内容标识符(CID)快速检索证书。考虑到区块链的透明性问题,系统结合国密算法和全同态加密算法,加密敏感数据,确保证书持有者的身份和隐私安全。实验结果表明,系统每秒可处理50次操作,颁发100张证书仅需2.39 s,相较于传统PKI-CA系统具有更高的性能和安全性。安全性分析结果表明,系统采用的国密算法和全同态加密技术有效实现了对系统关键数据和敏感数据的保护,区块链的去中心化与共识机制增强了系统的抗攻击能力,有效防止了恶意生成和伪造证书。
在智能系统安全领域,异常检测尤其是内部威胁的识别是一项极具挑战性的任务。现有方法通常依赖预定义规则或时序建模学习,但在面对未知威胁模式时存在局限,且难以充分挖掘日志数据的深层特征。针对这一问题,文章提出一种基于 Transformer 编码器(Trans-Encoder)与长短期记忆网络(LSTM)融合的内部威胁检测方法,旨在仅使用正常类数据训练实现日志中隐蔽异常的高效识别。首先,文章提出的方法通过改进 Transformer 编码器结构,增加屏蔽机制,从而增强了从多源日志数据中提取特征的能力。然后,应用 LSTM 进行时间序列建模,以捕捉提取特征之间的时间相关性,从而提高模型分析顺序依赖关系的能力。最后,计算预测值与对应特征值的差异度,并与阈值进行对比,以判断是否为异常操作。实验结果表明,该方法在内部威胁检测任务上的性能优于现有方法,其准确率提高1.5%,召回率提高4.8%,F1分数提高1.3%,在仅有10%训练数据的情况下,仍能保持稳定性能。此外,在训练阶段和测试阶段的计算效率都高于MTSAD,验证了其在智能系统安全中的应用潜力,为提升系统防护能力提供了一种高效可靠的解决方案。
个人隐私泄露是当前数据安全面临的严峻挑战。匿名技术通过对个人信息去标识化以降低隐私泄露的风险,但是不恰当的匿名处理流程会影响匿名结果,并且匿名数据仍存在一定程度的重识别风险。随着国内对数据安全流通监管的加强,如何面向数据合规,制定匿名流程,评估数据风险,对个人信息共享有重要意义。以往的匿名风险评估大多通过攻击模型判定安全性,忽视了匿名流程中的风险以及匿名数据的合规性。因此,文章提出一个匿名通用流程,并在此基础上,聚焦数据的安全性和合规性展开风险评估。安全性评估围绕流程风险和数据重识别风险提出配套的评估方法以及指标体系。合规性评估归纳现有标准并提出可量化的合规要求,在评估安全性的同时完成合规判定。文章设计匿名流程的仿真实验,验证了匿名通用流程的可行性,并通过模拟不同的风险场景,验证了风险评估方法可有效发现潜在威胁。
网络安全态势评估是态势感知领域中的一项重要研究。目前,已有许多网络安全态势评估方法,但以往的研究通常缺乏可迁移性或依赖专家经验,导致评估过程不够灵活,评估结果也带有一定的主观性。通过分析恶意流量图,发现攻击者通常表现出较高的中心性特征,而这种特征与社交网络中个体之间的互动和影响力传播有相似之处。在社交网络中,中心性分析用于识别关键节点并揭示其传播路径,类似地,恶意流量图中的中心性分析有助于识别攻击源和传播节点。通过这种结构上的相似性,社交网络分析方法得以迁移到恶意流量图,进一步增强了态势评估的可迁移性。为克服传统方法的迁移性问题,文章提出一种新颖的网络安全态势评估方法(ThreatSA),与传统的静态分析方法不同,ThreatSA将恶意流量转化为图结构,并通过中心性分析量化节点的重要性,识别出攻击者或传播节点。随后,利用亲密度分析衡量这些节点与其他节点之间的关系强度,从而动态反映主机的安全态势。ThreatSA仅依赖恶意流量数据,且适用于信息不完整的网络环境。通过对3个公开的网络攻击数据集进行实验评估,结果表明,ThreatSA能够实时评估网络态势,并达到99.32%、99.65%和99.74%的相似度。与当前具有代表性的两种方法相比,ThreatSA在网络安全态势评估中取得了卓越的表现。
基于深度学习的流量分析技术在提高网络管理效率的同时,也为恶意攻击者提供了新的入侵途径。攻击者可通过分析加密流量的时序特征提取用户的敏感信息,严重威胁个人隐私安全。目前的防御策略主要通过对抗样本误导对手的分类器,但现有策略在现实应用中存在明显局限。一方面,现有策略仅限于特征空间的扰动,无法对真实流量产生影响;另一方面,依赖于对攻击者模型的了解,仅在白盒环境下有效。鉴于针对黑盒环境下混淆真实流量的研究不足,文章提出一种基于对抗样本的流量时序特征混淆方法TAP。该方法无需访问对手分类器,即可针对时序特征生成有效的对抗扰动,其核心在于通过向单向通信流中插入少量分组,在不影响正常通信的前提下有效抵抗基于时序特征的流量分析。实验结果表明,文章所提方法在带宽开销不超过7%的情况下,显著降低了对手流量分类的准确率。
随着智能系统中应用软件的普及,保障软件的安全性对提升智能系统的可靠性至关重要。现有的模糊测试技术虽然能够在一定程度上揭示软件安全缺陷,但同时也面临着测试效果差和测试效率低的问题。针对上述问题,文章提出一种基于变异敏感的模糊测试方法(Seq2Seq-Fuzzer)。首先,提出4种基于改进LSTM和Transformer的Seq2Seq模型,通过构建基于objdump、readelf等程序的字节向量数据集,对所提的模型进行训练。然后,使用Seq2Seq模型对模糊测试器AFL进行优化,预测有效的变异策略和变异位置对,解决AFL模糊测试随机性大、效率低的问题。最后,对所提的AFL优化方法进行评估。实验结果表明,在对objdump、readelf和nm的测试中,Seq2Seq-Fuzzer的代码覆盖率较AFL最高提升了56.8%,并成功发现了21个针对objdump的程序的崩溃。