信息网络安全 ›› 2025, Vol. 25 ›› Issue (2): 327-336.doi: 10.3969/j.issn.1671-1122.2025.02.012

• 技术研究 • 上一篇    下一篇

基于CNN-LSTM算法的内部威胁检测方法

杨梦华, 易军凯, 朱贺军()   

  1. 北京信息科技大学自动化学院,北京 100085
  • 收稿日期:2024-12-03 出版日期:2025-02-10 发布日期:2025-03-07
  • 通讯作者: 朱贺军 E-mail:18611399408@163.com
  • 作者简介:杨梦华(2000—),女,河北,硕士研究生,主要研究方向为信息网络安全|易军凯(1972—),男,湖南,教授,博士,主要研究方向为人工智能|朱贺军(1975—),男,内蒙古,正高级工程师,博士,CCF高级会员,主要研究方向为数据安全
  • 基金资助:
    国家重点研发计划(2024QY1703)

CNN-LSTM Algorithm-Based Insider Threat Detection Model

YANG Menghua, YI Junkai, ZHU Hejun()   

  1. School of Automation, Beijing Information Science and Technology University, Beijing 100085, China
  • Received:2024-12-03 Online:2025-02-10 Published:2025-03-07

摘要:

企业或组织面临的信息安全风险主要来自内部威胁,特别是内部人员的恶意行为,这类风险相较于外部攻击更具隐蔽性和难以检测性。为了更加准确地检测出企业或组织内部人员的恶意行为,文章基于用户行为日志分析,提出一种基于CNN-LSTM算法的内部威胁检测方法。该方法使用CMU CERT R4.2公开的内部威胁数据集构建用户行为特征序列,首先通过CNN层对用户行为进行重要特征提取,然后使用LSTM层进行用户行为预测,最后通过全连接层识别用户的行为是否为威胁行为。将文章所提出的模型与 CNN、LSTM、LSTM-CNN 等经典内部威胁检测模型进行了对比实验。实验结果验证了所提模型的可实现性,并且展现出其在内部威胁行为检测方面的优势。在评估指标中,该模型的AUC得分达到0.99。具体而言,实验表明采用 CNN-LSTM 算法进行内部威胁检测的方法能够显著降低误报率,准确率达到98% ,能够有效识别企业内部潜藏的威胁行为。

关键词: 内部威胁检测, 用户行为日志, CNN, LSTM

Abstract:

The primary information security risks encountered by enterprises and organizations stem from internal threats, particularly malicious behaviors by internal personnel. These risks are inherently more covert and difficult to detect compared to external attacks. To improve the accuracy of detecting malicious behaviors by internal personnel, this study proposed an insider threat detection model based on the CNN-LSTM algorithm, utilizing user behavior log analysis. The model leveraged the publicly available CMU CERT R4.2 insider threat dataset to construct sequences of user behavior features. In this model, a CNN layer was first employed to extract key features from user behavior data, followed by an LSTM layer to capture temporal dependencies and predict behavior patterns. Finally, a fully connected layer is used to determine whether the behavior constitutes a threat. Comparative experiments with CNN, LSTM, and LSTM-CNN models validate the feasibility and superior performance of the proposed model in detecting insider threats, achieving an AUC score of 0.99. The experimental results further demonstrate that the CNN-LSTM algorithm significantly reduces the false positive rate and achieves a detection accuracy of 98%, effectively identifying potential internal threats within organizations.

Key words: insider threat detection, user behavior logs, CNN, LSTM

中图分类号: