信息网络安全 ›› 2025, Vol. 25 ›› Issue (2): 249-259.doi: 10.3969/j.issn.1671-1122.2025.02.006
收稿日期:
2024-05-22
出版日期:
2025-02-10
发布日期:
2025-03-07
通讯作者:
陈杰
E-mail:jchen@mail.xidian.edu.cn
作者简介:
武浩莹(2000—),女,河北,硕士研究生,主要研究方向为分组密码分析|陈杰(1979—),女,湖南,副教授,博士,主要研究方向为密码算法设计与分析|刘君(1993—),女,陕西,讲师,博士,主要研究方向为分组密码算法设计与分析
基金资助:
WU Haoying1, CHEN Jie1,2(), LIU Jun3
Received:
2024-05-22
Online:
2025-02-10
Published:
2025-03-07
摘要:
神经网络差分区分器具备良好的泛化能力和强大的学习能力,但目前仍缺乏完善且具有普适性的神经网络差分区分模型。为提升Simon32/64和Simeck32/64神经网络差分区分器的准确率和普适性,文章提出3个改进方向。首先,采用多密文对作为Simon32/64和Simeck32/64的输入,并将Inception网络模块引入神经网络模型,以改善过拟合现象。然后,将Simon32/64和Simeck32/64倒数第二轮的差分信息加入多密文对输入样本中,构造7~10轮和7~11轮神经网络差分区分器。最后,将多密文对与多面体差分结合,根据Simon32/64和Simeck32/64两种密码构造改进多面体差分区分器,提高已有多面体神经网络差分区分器的准确率。实验结果表明,8轮Simon32/64和Simeck32/64新型多面体神经网络差分区分器的准确率分别达到99.54%和99.67%。此外,利用10轮神经网络差分区分器对12轮Simon32/64和Simeck32/64开展最后一轮子密钥恢复攻击,在100次攻击实验中,攻击成功率分别达到86%和97%。
中图分类号:
武浩莹, 陈杰, 刘君. 改进Simon32/64和Simeck32/64神经网络差分区分器[J]. 信息网络安全, 2025, 25(2): 249-259.
WU Haoying, CHEN Jie, LIU Jun. Improved Neural Network Differential Distinguisher of Simon32/64 and Simeck32/64[J]. Netinfo Security, 2025, 25(2): 249-259.
表1
Simon32/64和Simeck32/64多密文对神经网络差分区分器的准确率对比
密码 | 轮数 | |||||
---|---|---|---|---|---|---|
Simon32/64 | 7 | 96.73 % | 99.22 % | 99.51 % | 99.16 % | 99.12 % |
Simon32/64 | 8 | 76.76 % | 77.36 % | 80.38 % | 85.46 % | 89.21 % |
Simon32/64 | 9 | 62.70 % | 64.38 % | 67.17 % | 62.84 % | 62.50 % |
Simeck32/64 | 7 | 98.75 % | 99.78 % | 99.81 % | 99.96 % | 99.99 % |
Simeck32/64 | 8 | 86.77 % | 91.38 % | 97.13 % | 97.31 % | 97.92 % |
Simeck32/64 | 9 | 67.26 % | 68.58 % | 67.95 % | 66.98 % | 66.90 % |
[1] | BOGDANOV A, KNUDSEN L R, LEANDER G, et al. PRESENT: An Ultra-Lightweight Block Cipher[C]// Springer. Cryptographic Hardware and Embedded Systems-CHES 2007. Heidelberg: Springer, 2007: 450-466. |
[2] | WU Wenling, ZHANG Lei. LBlock: A Lightweight Block Cipher[C]// Springer. Applied Cryptography and Network Security (ACNS 2011). Heidelberg: Springer, 2011: 327-344. |
[3] | BEAULIEU R, SHORS D, SMITH J, et al. The Simon and Speck Families of Lightweight Block Ciphers[C]// IEEE. 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC). New York: IEEE, 2015: 1-6. |
[4] | YANG Gangqiang, ZHU Bo, SUDER V, et al. The Simeck Family of Lightweight Block Ciphers[C]// Springer. Cryptographic Hardware and Embedded Systems-CHES 2015. Heidelberg: Springer, 2015: 307-329. |
[5] | WANG Meiqin. Differential Cryptanalysis of Reduced-Round PRESENT[C]// Springer. Progress in Cryptology-AFRICACRYPT 2008. Heidelberg: Springer, 2008: 40-49. |
[6] | WANG Ning, WANG Xiaoyun, JIA Keting. Improved Impossible Differential Attack on Reduced-Round LBlock[C]// Springer. Information Security and Cryptology-ICISC 2015. Heidelberg: Springer, 2016: 136-152. |
[7] | LI Mingming, GUO Jiansheng, CUI Jingyi, et al. Impossible Differential Cryptanalysis of SPECK[C]// Springer. Trusted Computing and Information Security. Heidelberg: Springer, 2019: 16-31. |
[8] | SUN Ling, FU Kai, WANG Meiqin. Improved Zero-Correlation Cryptanalysis on SIMON[C]// Springer. Information Security and Cryptology. Heidelberg: Springer, 2016: 125-143. |
[9] | QIAO Kexin, HU Lei, SUN Siwei. Differential Analysis on Simeck and SIMON with Dynamic Key-Guessing Techniques[C]// Springer. Information Systems Security and Privacy. Heidelberg: Springer, 2017: 64-85. |
[10] | GOHR A. Improving Attacks on Round-Reduced Speck32/64 Using Deep Learning[C]// Springer. Advances in Cryptology-CRYPTO 2019. Heidelberg: Springer, 2019: 150-179. |
[11] | PAL D, MANDAL U, DAS A, et al. Deep Learning Based Differential Classifier of PRIDE and RC5[C]// Springer. Applications and Techniques in Information Security. Heidelberg: Springer, 2023: 46-58. |
[12] | JAIN A, KOHLI V, MISHRA G. Deep Learning-Based Differential Distinguisher for Lightweight Cipher PRESENT[EB/OL]. (2020-07-12)[2024-04-30]. https://eprint.iacr.org/2020/846, 2020-07-12/2023-1-17. |
[13] | HOU Zezhou, CHEN Shaozhen, REN Jiongjiong. Research and Application of Deep Learning on Differential Distinguisher of Block Cipher[J]. Journal of Software, 2022, 33(5): 1893-1906. |
侯泽洲, 陈少真, 任炯炯. 深度学习在分组密码差分区分器上的研究应用[J]. 软件学报, 2022, 33(5): 1893-1906. | |
[14] | ZHANG Liu, WANG Zilong, WANG Baocang. Improving Differential-Neural Cryptanalysis with Inception[EB/OL]. (2022-02-20)[2024-04-30]. https://eprint.iacr.org/2022/183, 2022-02-10/2023-1-17. |
[15] | BENAMIRA A, GERAULT D, PEYRIN T, et al. A Deeper Look at Machine Learning-Based Cryptanalysis[C]// Springer. Cryptology-EUROCRYPT 2021. Heidelberg: Springer, 2021: 805-835. |
[16] | BAKSI A. Machine Learning-Assisted Differential Distinguishers for Lightweight Ciphers[C]// Springer. Classical and Physical Security of Symmetric Key Cryptographic Algorithms. Heidelberg: Springer, 2022: 141-162. |
[17] | HOU Zezhou, REN Jiongjiong, CHEN Shaozhen. Improve Neural Distinguisher for Cryptanalysis[EB/OL]. (2021-08-06)[2024-04-30]. https://eprint.iacr.org/2021/1017, 2021-08-06/2023-1-17. |
[18] | CHEN Yi, SHEN Yantian, YU Hongbo, et al. A New Neural Distinguisher Considering Features Derived from Multiple Ciphertext Pairs[J]. The Computer Journal, 2023, 66(6): 1419-1433. |
[19] | FU Chaohui, DUAN Ming, WEI Qiang, et al. Polytopic Differential Attack Based on Deep Learning and Its Application[J]. Journal of Cryptologic Research, 2021, 8(4): 591-600. |
[20] | BIHAM E, SHAMIR A. Differential Cryptanalysis of DES-Like Cryptosystems[J]. Journal of Cryptology, 1991, 4(1): 63-72. |
[21] | TIESSEN T. Polytopic Cryptanalysis[C]// Springer. Cryptology-EUROCRYPT 2016. Heidelberg: Springer, 2016: 214-239. |
[22] | SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going Deeper with Convolutions[C]// IEEE. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2015: 1-9. |
[23] | YANG Xiaoxue, CHEN Jie, HAN Lidong. Application of Deep Learning in Differential Cryptanalysis of ARX Block Ciphers[J]. Journal of Cryptologic Research, 2022, 9(5): 923-935. |
[24] | SU Hengchuan, ZHU Xuanyong, MING Duan.Polytopic Attack on Round-Reduced Simon32/64 Using Deep Learning[C]// Springer. Information Security and Cryptology. Heidelberg: Springer, 2021: 3-20. |
[1] | 李海龙, 崔治安, 沈燮阳. 网络流量特征的异常分析与检测方法综述[J]. 信息网络安全, 2025, 25(2): 194-214. |
[2] | 金地, 任昊, 唐瑞, 陈兴蜀, 王海舟. 基于情感辅助多任务学习的社交网络攻击性言论检测技术研究[J]. 信息网络安全, 2025, 25(2): 281-294. |
[3] | 陈晓静, 陶杨, 吴柏祺, 刁云峰. 面向骨骼动作识别的优化梯度感知对抗攻击方法[J]. 信息网络安全, 2024, 24(9): 1386-1395. |
[4] | 徐茹枝, 张凝, 李敏, 李梓轩. 针对恶意软件的高鲁棒性检测模型研究[J]. 信息网络安全, 2024, 24(8): 1184-1195. |
[5] | 田钊, 牛亚杰, 佘维, 刘炜. 面向车联网的车辆节点信誉评估方法[J]. 信息网络安全, 2024, 24(5): 719-731. |
[6] | 张光华, 刘亦纯, 王鹤, 胡勃宁. 基于JSMA对抗攻击的去除深度神经网络后门防御方案[J]. 信息网络安全, 2024, 24(4): 545-554. |
[7] | 徐子荣, 郭焱平, 闫巧. 基于特征恶意度排序的恶意软件对抗防御模型[J]. 信息网络安全, 2024, 24(4): 640-649. |
[8] | 杨志鹏, 刘代东, 袁军翼, 魏松杰. 基于自注意力机制的网络局域安全态势融合方法研究[J]. 信息网络安全, 2024, 24(3): 398-410. |
[9] | 江荣, 刘海天, 刘聪. 基于集成学习的无监督网络入侵检测方法[J]. 信息网络安全, 2024, 24(3): 411-426. |
[10] | 冯光升, 蒋舜鹏, 胡先浪, 马明宇. 面向物联网的入侵检测技术研究新进展[J]. 信息网络安全, 2024, 24(2): 167-178. |
[11] | 赵鹏程, 于俊清, 李冬. 一种基于深度学习的SRv6网络流量调度优化算法[J]. 信息网络安全, 2024, 24(2): 272-281. |
[12] | 金志刚, 丁禹, 武晓栋. 融合梯度差分的双边校正联邦入侵检测算法[J]. 信息网络安全, 2024, 24(2): 293-302. |
[13] | 张选, 万良, 罗恒, 杨阳. 基于两阶段图学习的僵尸网络自动化检测方法[J]. 信息网络安全, 2024, 24(12): 1933-1947. |
[14] | 印杰, 陈浦, 杨桂年, 谢文伟, 梁广俊. 基于人工智能的物联网DDoS攻击检测[J]. 信息网络安全, 2024, 24(11): 1615-1623. |
[15] | 魏金侠, 黄玺章, 付豫豪, 李婧, 龙春. 基于全局特征学习的挖矿流量检测方法[J]. 信息网络安全, 2024, 24(10): 1506-1514. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 45
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 70
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||