信息网络安全 ›› 2025, Vol. 25 ›› Issue (2): 249-259.doi: 10.3969/j.issn.1671-1122.2025.02.006

• 理论研究 • 上一篇    下一篇

改进Simon32/64和Simeck32/64神经网络差分区分器

武浩莹1, 陈杰1,2(), 刘君3   

  1. 1.西安电子科技大学通信工程学院,西安 710071
    2.河南省网络密码技术重点实验室,郑州 450001
    3.陕西师范大学计算机科学学院,西安 710119
  • 收稿日期:2024-05-22 出版日期:2025-02-10 发布日期:2025-03-07
  • 通讯作者: 陈杰 E-mail:jchen@mail.xidian.edu.cn
  • 作者简介:武浩莹(2000—),女,河北,硕士研究生,主要研究方向为分组密码分析|陈杰(1979—),女,湖南,副教授,博士,主要研究方向为密码算法设计与分析|刘君(1993—),女,陕西,讲师,博士,主要研究方向为分组密码算法设计与分析
  • 基金资助:
    国家自然科学基金(62302285);河南省网络密码技术重点实验室研究课题(LNCT2022-A08)

Improved Neural Network Differential Distinguisher of Simon32/64 and Simeck32/64

WU Haoying1, CHEN Jie1,2(), LIU Jun3   

  1. 1. School of Telecommunications Engineering, Xidian University, Xi’an 710071, China
    2. Henan Key Laboratory of Network Cryptography Technology, Zhengzhou 450001, China
    3. School of Computer Science, Shaanxi Normal University, Xi’an 710119, China
  • Received:2024-05-22 Online:2025-02-10 Published:2025-03-07

摘要:

神经网络差分区分器具备良好的泛化能力和强大的学习能力,但目前仍缺乏完善且具有普适性的神经网络差分区分模型。为提升Simon32/64和Simeck32/64神经网络差分区分器的准确率和普适性,文章提出3个改进方向。首先,采用多密文对作为Simon32/64和Simeck32/64的输入,并将Inception网络模块引入神经网络模型,以改善过拟合现象。然后,将Simon32/64和Simeck32/64倒数第二轮的差分信息加入多密文对输入样本中,构造7~10轮和7~11轮神经网络差分区分器。最后,将多密文对与多面体差分结合,根据Simon32/64和Simeck32/64两种密码构造改进多面体差分区分器,提高已有多面体神经网络差分区分器的准确率。实验结果表明,8轮Simon32/64和Simeck32/64新型多面体神经网络差分区分器的准确率分别达到99.54%和99.67%。此外,利用10轮神经网络差分区分器对12轮Simon32/64和Simeck32/64开展最后一轮子密钥恢复攻击,在100次攻击实验中,攻击成功率分别达到86%和97%。

关键词: 深度学习, Inception模块, 多密文对, 多面体差分, 密钥恢复攻击

Abstract:

Neural distinguishers have good generalisation ability as well as powerful learning ability, but there is still a lack of perfect and universal neural network distinguishing model. In order to increase the accuracy of the neural distinguishers of Simon32/64 and Simeck32/64, increase the generalizability of the neural differential distinguishers, this paper proposed three improvement directions. First, multiple ciphertext pairs were used as inputs to the Simon32/64 and Simeck32/64 neural distinguishers, and the Inception network module was added to the neural network model to improve the overfitting phenomenon. Then, added Simon32/64 and Simeck32/64 penultimate round difference information to the multi-ciphertext pair input samples, constructed the netural distinguishers of 7 to 10 rounds of Simon32/64 and 7 to 11 rounds of Simeck32/64. Finelly, multiple ciphertext pairs were combined with polyhedral difference, constructed polyhedral differential distinguishers for Simon32/64 and Simeck32/64. The accuracy of the polyhedral neural distinguishers were improved. The experimental results show that the new polyhedral netural distinguishers of 8-round of Simon32/64 reach the accuracy of 99.54% and 8-round of Simeck32/64 reach the accuracy of 99.67%. In addition, the improved netural distinguishers of the 10-round of Simon32/64 and Simeck32/64 are applied to the final round of key recovery attacks of 12-round of Simon32/64 and Simeck32/64, the success rate of the attacks respectively reaches 86% and 97% in 100 attack experiments.

Key words: deep learning, Inception module, multiple ciphertext pairs, polyhedral difference, key recovery attack

中图分类号: