信息网络安全 ›› 2025, Vol. 25 ›› Issue (8): 1240-1253.doi: 10.3969/j.issn.1671-1122.2025.08.006

• 理论研究 • 上一篇    下一篇

面向数据不平衡的网络入侵检测系统研究综述

金志刚(), 李紫梦, 陈旭阳, 刘泽培   

  1. 天津大学电气自动化与信息工程学院,天津 300072
  • 收稿日期:2025-06-11 出版日期:2025-08-10 发布日期:2025-09-09
  • 通讯作者: 金志刚 E-mail:zgjin@tju.edu.cn
  • 作者简介:金志刚(1972—),男,上海,教授,博士,主要研究方向为无线网络与网络安全|李紫梦(2001—),女,河北,硕士研究生,主要研究方向为深度学习与水下传感器网络|陈旭阳(1999—),男,山东,硕士研究生,主要研究方向为物联网安全与入侵检测系统|刘泽培(1998—),男,天津,博士研究生,主要研究方向为物联网安全与联邦学习
  • 基金资助:
    国家自然科学基金(52171337)

Review of Network Intrusion Detection System for Unbalanced Data

JIN Zhigang(), LI Zimeng, CHEN Xuyang, LIU Zepei   

  1. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • Received:2025-06-11 Online:2025-08-10 Published:2025-09-09

摘要:

基于机器学习的网络入侵检测系统凭借其优秀的特征提取和识别能力成为近年来的研究热点。然而,实际网络中流量数据显著失衡、攻击流量难以捕捉,数据不平衡问题导致模型泛化困难、检测性能受损。为应对数据不平衡问题,文章对网络入侵检测领域的相关研究成果进行了整理与分析。首先,介绍入侵检测和数据不平衡的相关概念,并总结常用的数据集与评价指标;然后,从数据和模型两个角度归纳已有方法并分析优缺点;最后,针对现有研究成果所存在的问题进行分析,并展望该领域未来的发展趋势。

关键词: 网络入侵检测, 数据不平衡, 数据增强, 深度学习

Abstract:

Network intrusion detection systems based on machine learning have become a research hotspot in recent years due to their excellent feature extraction and recognition capabilities. However, traffic data is imbalanced, and attack traffic is difficult to capture in real-world networks. The issue of unbalanced data leads to challenges in model generalization and degrades detection performance. To address the problem of unbalanced data, this paper analyzed relevant research in network intrusion detection. Firstly, it introduced the concepts of intrusion detection and unbalanced data and summarized commonly used datasets and evaluation metrics. Secondly, it categorized existing methods from both data and model perspectives and analyzed their advantages and disadvantages. Finally, the paper discussed the problems in current research and the trends in future development.

Key words: network intrusion detection, unbalanced data, data augmentation, deep learning

中图分类号: