信息网络安全 ›› 2025, Vol. 25 ›› Issue (9): 1465-1472.doi: 10.3969/j.issn.1671-1122.2025.09.014

• 入选论文 • 上一篇    下一篇

贝叶斯优化的DAE-MLP恶意流量识别模型

王新猛1(), 陈俊雹1, 杨一涛1, 李文瑾2, 顾杜娟2   

  1. 1.南京警察学院信息技术学院,南京 210023
    2.绿盟科技集团股份有限公司,北京 100080
  • 收稿日期:2025-06-05 出版日期:2025-09-10 发布日期:2025-09-18
  • 通讯作者: 王新猛 wxmjr@sina.com
  • 作者简介:王新猛(1973—),男,江苏,教授,硕士,主要研究方向为网络空间安全|陈俊雹(1990—),男,江苏,副教授,博士,主要研究方向为公安人工智能|杨一涛(1980—),男,江苏,教授,硕士,主要研究方向为公安信息技术|李文瑾(1983—),女,湖北,硕士,CCF高级会员,主要研究方向为网络攻防技术|顾杜娟(1979—),女,江苏,博士,CCF会员,主要研究方向为人工智能与网络安全
  • 基金资助:
    CCF-绿盟科技“鲲鹏”科研基金(CCF-NSFOCUS 202217)

Bayesian Optimized DAE-MLP Malicious Traffic Identification Model

WANG Xinmeng1(), CHEN Junbao1, YANG Yitao1, LI Wenjin2, GU Dujuan2   

  1. 1. Department of Information Technology, Nanjing Police University, Nanjing 210023, China
    2. NSFOCUS Technologies Group Co., Ltd., Beijing 100080, China
  • Received:2025-06-05 Online:2025-09-10 Published:2025-09-18

摘要:

随着互联网技术的迅猛发展,网络安全问题愈发凸显,其中恶意流量已成为网络安全领域亟需解决的关键问题之一。文章首先对NSL-KDD、CSIC 2010和CICIDS2017等网络入侵检测数据集进行预处理和融合,构建成新的研究数据集;然后,基于深度自编码器(DAE)的恶意流量特征提取算法,提取出具有较强鲁棒性的流量特征,并通过贝叶斯优化调整基于DAE-MLP的恶意流量识别算法的超参数;最后,对多种典型的机器学习和深度学习模型进行比较实验与分析。实验结果表明,相较于传统的机器学习和深度学习模型,文章提出的恶意流量识别模型具有更强的数据表示和自动特征学习能力,计算复杂度较低,可以更好地捕捉数据中的复杂模式,并具备一定的可解释性。

关键词: 恶意流量识别, 融合模型, 特征提取, 入侵检测, 深度学习

Abstract:

With the rapid development of Internet technology, the issue of network security has become increasingly serious, and malicious traffic has emerged as a significant problem in the field of network security. This paper first preprocessed and fused the NSL-KDD, CSIC 2010, and CICIDS2017 network intrusion detection datasets to form the research dataset for this study. Then, it investigated a malicious traffic feature extraction algorithm based on DAE, which effectively extracted traffic features with strong robustness. The hyperparameters of the malicious traffic identification algorithm based on DAE-MLP were optimized and adjusted using bayesian optimization. Comparative experimental analyses were conducted on several typical machine learning and deep learning algorithms. Compared with traditional machine learning and deep learning methods, the malicious traffic identification method proposed in this paper has stronger data representation and automatic feature learning capabilities, lower computational complexity, and can better capture complex patterns in the data, while also being interpretable.

Key words: malicious traffic identification, fusion model, feature extraction, intrusion detection, deep learning

中图分类号: