信息网络安全 ›› 2025, Vol. 25 ›› Issue (9): 1367-1376.doi: 10.3969/j.issn.1671-1122.2025.09.005

• 入选论文 • 上一篇    下一篇

基于Transformer的超分辨率网络对抗样本防御方法研究

徐茹枝, 武晓欣(), 吕畅冉   

  1. 华北电力大学控制与计算机工程学院,北京 102206
  • 收稿日期:2024-12-09 出版日期:2025-09-10 发布日期:2025-09-18
  • 通讯作者: 武晓欣 120232227082@ncepu.edu.cn
  • 作者简介:徐茹枝(1966—),女,江西,教授,博士,主要研究方向为智能电网和AI安全|武晓欣(2000—),女,河北,硕士研究生,主要研究方向为网络安全和AI安全|吕畅冉(1998—),女,河北,硕士研究生,主要研究方向为网络安全和AI安全
  • 基金资助:
    国家自然科学基金(62372173)

Research on Transformer-Based Super-Resolution Network Adversarial Sample Defense Method

XU Ruzhi, WU Xiaoxin(), LYU Changran   

  1. School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
  • Received:2024-12-09 Online:2025-09-10 Published:2025-09-18

摘要:

深度学习模型易遭受攻击者精心设计的对抗样本攻击的安全问题已引起广泛关注。现有针对深度学习对抗攻击的防御方法虽能取得一定效果,但仍存在通用性不足的缺陷:对特定攻击类型防御效果显著,而对其他攻击防御能力有限甚至失效。文章提出一种基于Transformer架构的超分辨率网络通用防御方法。首先,通过自注意力机制动态增强图像高频区域信息以提升图像质量;然后,采用多尺度特征融合技术有效抑制对抗扰动;最后,创新性地引入多样化窗口划分策略,在维持长距离像素依赖关系的前提下显著降低模型计算复杂度。实验结果表明,该方法对多种攻击类型的平均防御成功率高达90%,不仅优于现有基线方法,而且展现出更强的鲁棒性。

关键词: 对抗攻击, 通用防御, 深度学习, 图像超分辨率

Abstract:

The security vulnerability of deep learning models to carefully crafted adversarial attacks has garnered significant attention. Although existing defense methods against adversarial attacks have made some progress, they still suffer from poor generality, exhibiting strong defense performance against specific attack types while showing limited or ineffective protection against others. This paper proposed a universal defense method based on a Transformer architecture for super-resolution networks. First, the dynamic enhancement of high-frequency image information was achieved through self-attention mechanisms to improve image quality. Second, multi-scale feature fusion techniques were employed to effectively suppress adversarial perturbations. Finally, an innovative diversified window partitioning strategy was introduced, significantly reducing computational complexity while maintaining long-range pixel dependencies. Experimental results demonstrate that the proposed method achieved an average defense success rate of 90% against multiple attack types, surpassing existing baseline methods while exhibiting stronger robustness.

Key words: adversarial attacks, universal defense, deep learning, image super-resolution

中图分类号: